
Enhanced Data and Task 
Abstractions for Extreme-scale 

Runtime Systems 
PhD Thesis by Nick Vrvilo 

Department of Computer Science 
Rice University 

June 30, 2017 Committee: Vivek Sarkar, Corky Cartwright and Lin Zhong 



Extreme-scale Computing 
•  100-way parallelism on a chip 
•  1000-way parallelism on a node 
•  Similar energy footprint to current systems 
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Challenges at Extreme-scale 
•  Need 100x more parallelism in software 
•  Highly constrained memory & bandwidth 
•  Frequent failures 
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Extreme-scale Runtimes 
•  New runtimes for extreme-scale: 
– HPX 
– Open Community Runtime (OCR) 
– Realm 

•  Existing runtimes adapting to extreme-scale: 
– Berkeley UPC 
– Charm++ 
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My contributions are marked in 
GREEN 
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Runtime Feature Comparison 
Pointer Safety Blocking High-level languages 

Charm++ Programmer’s 
responsibility 

ucontext Not yet supported 

HPX Programmer’s 
responsibility 

ucontext or 
boost::context 

Not yet supported 

OCR Static and dynamic 
checks 

Many options 
presented 

CnC 

Realm Programmer’s 
responsibility 

ucontext Legion, Regent 

UPC++ No data migration SPMD blocking Not yet supported 
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OCR: Runtime Goals 
•  Portability for apps across hardware 
•  Resilience as a fundamental design feature 
•  Performance through hints and introspection 

Note: programmability is not a goal of OCR. 
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OCR: Programming Model 
•  Tasks for computation 
•  Datablocks for all non-temporary data 
•  Events for dependence management 
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OCR: Ecosystem Vision 

Hero 
Programmer 

Smart 
Compiler 

Higher-level 
language 

Higher-level 
library 

Open Community Runtime Framework 
(Building Blocks) 

Extreme-scale Platforms 

R-Stream, ROSE, LLVM CnC, Chapel, … 
Legion, HClib,  
Habanero-UPC++, … 

MPI, GASNet, 
OpenSHMEM, 
UCX, … 

C, C++, Fortran 
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OCR: Intended Users 
•  Concurrency experts / “hero programmers” 
•  Library implementers 
•  Compiler back-end engineers 
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Note: mere mortals are not the target users. 



Thesis Statement 

We assert that runtime challenges tied to 
extreme-scale computing can be solved with 

marginal overhead, while also limiting the burden 
placed on the application programmer. 
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Our Proposed Solutions 
1.  Position-independent object encoding for 

migratable datablocks 
2.  Practical support for blocking constructs in 

lightweight tasking runtimes 

3.  CnC-OCR: a productivity layer for OCR 
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External Runtime Components 

#3 CnC-OCR: a productivity layer for OCR 



Outline 
1.  Position-independent object encoding for 

migratable datablocks 
2.  Practical support for blocking constructs in 

lightweight tasking runtimes 

3.  CnC-OCR: a productivity layer for OCR 
4.  Conclusions and future directions 
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C++ Gaining Ground in HPC 
•  AllScale (EU Horizon 2020) 
•  Kokkos (Sandia) 
•  Legion (Los Alamos & Stanford) 
•  RAJA (Lawrence Livermore) 
•  UPC++ (Berkeley) 
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… but OCR only defines a C language API 



Problem #1: Description 
•  Requirements of OCR data model: 
– OCR can move datablocks (whenever not in use) 
– OCR treats datablocks as opaque (memcpy contents) 
– Moving invalidates pointers into a datablock 
– All persistent data must be stored in datablocks 

•  Consequence on application code: 
– Native pointers cannot be persisted across tasks! 
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Motivating C++ App: Tempest 
•  Climate system modeling framework 
•  Lead developer: Paul Ullrich (UC Davis) 
•  Uses idiomatic C++: 
– Aggregate objects 
–  STL vectors 

•  Port to OCR started 
by Gabriele Jost 
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OCR + Tempest: Problems 
•  Tempest uses C++… 

⇒ extern “C”, static_cast from void*, etc. 

•  Tempest expects point-to-point messages 
⇒ Rewrite blocking code (manual CPS-transform) 

•  Tempest model uses aggregate C++ objects 
⇒ ⁇? (segfaults in distributed runs) 

20 



Node B Node A 

Problem #1: Example 
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No Serialization Support in OCR 
•  OCR does not support object serialization 
– No pre/post-migration hooks for datablocks 
– Pure C API also makes serialization difficult 
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•  Assume we added pre/post migration hooks 
– Can correctly update intra-datablock pointers 
– Still can’t handle inter-datablock pointers 



Node B Node A 

Problem #1: Example (revisited) 
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Proposed Solution #1 

Sanitize all objects that are persisted in 
datablocks across multiple tasks, using 

position-independent C++ “pointer” objects. 
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Node B Node A 

Example using Based Pointer 
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ocxxr: C++ Support for OCR  
•  Provides C++ API support for: 
–  Initializing C++ objects within datablocks 
– Datablocks as allocation arenas 
–  Position-independent pointer objects 

•  Additional benefits: 
–  Improved static type checking (via templates) 
–  Little-to-no overhead from inlined C++ wrappers 

•  Comprises 1275 Logical SLOC 
26 https://github.com/DaoWen/ocxxr 



Classes of Pointers in ocxxr 
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Datablock A Datablock B 

RelPtr<T> p1 

BasedPtr<T> p2 

* 

* 
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ocxxr: API Example 
using namespace ocxxr; 
 

struct Node { 

  int value; 

  RelPtr<Node> left; 

  RelPtr<Node> right; 

}; 
 

struct Tree { 

  RelPtr<Node> root; 

  // ... methods ... 

}; 

 

void SubTask(int i, Arena<Tree> tree) { 

  Node *tree_root = tree->root; 

  if (i < 10) { 

    // ... do something with tree_root ... 

    TaskBuilder<decltype(SubTask)> builder = /* ... */; 

    builder.CreateTask(i+1, tree); 

  } else { Shutdown(); } 

} 
 

void MainTask() { 

  Arena<Tree> tree = Arena<Tree>::Create(ARENA_SIZE); 

  // ... set up tree ... 

  TaskBuilder<decltype(SubTask)> builder = /* ... */; 

  builder.CreateTask(0, tree); 

} 
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Bonus: ocxxr Expressiveness 
Fib in ocxxr: 63 LSLOC 
 

 

 

void FibContinuation( 

    ocxxr::Event<u32> &output, 

    ocxxr::Datablock<u32> lhs, 

    ocxxr::Datablock<u32> rhs) { 

  // left_value + right_value —> output 

  lhs.data() += rhs.data(); 

  rhs.handle().Destroy(); 

  output.Satisfy(lhs); // type-checked 

 

} 

Fib in OCR: 132 LSLOC 
ocrGuid_t fib_continuation( 

    u32 paramc, u32* paramv,  

    u32 depc, ocrEdtDep_t depv[]) { 

  // unpacking arguments 

  ocrGuid_t output = *(ocrGuid_t*)paramv; 

  u32 *lhs = depv[0].ptr; 

  u32 *rhs = depv[1].ptr; 

  // left_value + right_value —> output 

  *lhs += *rhs; 

  ocrDbDestroy(depv[1].guid); 

  ocrEventSatisfy(output, depv[1].guid); 

  return NULL_GUID; // unused return value 

} 29 



Pointer Conversion Algorithm 

30 

•  Two main phases: 
1.  Identify all types persisted in datablocks 
2.  Process class types to convert pointer fields 

•  Template instances handled individually 
•  Prototyped using Clang LibTooling 

https://github.com/DaoWen/ocxxr-ptr-xform 



Pointer Conversion Example 
struct MyNode { 

  double value; 

  MyNode *next; 

}; 

 

void MyTask(ocxxr::Arena<MyNode> arena) {   

  MyNode *head = arena.data_ptr(); 

  MyNode *next = arena.New<MyNode>(); 

  next->value = 1234.56; 

  // the pointer and its addressee 

  // are within the same datablock 

  head->next = next; 

} 
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  MyNode *next;   ocxxr::BasedDbPtr<MyNode> next;   

1.  Identify types τ in task 
dependence inputs 

2.  Find all pointer members 
of the class type τ 

3.  Replace pointer types 
with BasedDbPtr types 

4.  Recursively fix pointers in 
BasedDbPtr target types 

void MyTask(ocxxr::Arena<MyNode> arena) {   

  ocxxr::BasedDbPtr<MyNode> next; 



Algorithm Limitations 
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•  Does not find types “hidden” by casts 
void* → SomeType* 

•  Does not handle C++ STL classes (allocators) 
•  May transform classes used in temporary data 
•  Currently lacks alias analysis: cannot identify 

safe candidates for representation as RelPtr<T> 



Slowdown vs Native Pointers 
Benchmark Position-independent 

BinaryTree 1.130 ± 0.037 

HashTable 1.002 ± 0.029 

LULESH 1.005 ± 0.018 

Tempest 0.997 ± 0.028 

UTS 1.002 ± 0.051 
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Error margins give 95% confidence interval 

No significant delta 13% 



Slowdown ~ Pointer Operations 
Slowdown vs Native Pointers Pointer Operation Densities 
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13% 30%–50% of all cycles 



BinaryTree Benchmark 
Slowdowns for Pointer Variants 

Variant Slowdown 

T* (native) 1.000 ± .036 

RelPtr<T> 1.136 ± .042 

BasedPtr<T> 3.578 ± .095 

BasedDbPtr<T> 2.338 ± .042 
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Error margins give 95% confidence interval 



Summary of Resolution for #1 
•  ocxxr library: C++ support for OCR 
–  Safe pointer-object encoding in datablocks 
–  Enabled porting C++ framework to OCR 

–  Marginal overhead measured in real kernels 

•  Conservative pointer-conversion algorithm 
with Clang-based transformation tool 
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Outline 
1.  Position-independent object encoding for 

migratable datablocks 
2.  Practical support for blocking constructs in 

lightweight tasking runtimes 

3.  CnC-OCR: a productivity layer for OCR 
4.  Conclusions and future directions 
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Problem #2: Description 
•  Default scheduling strategy in OCR and 

HClib does not properly support blocking 
•  The runtime introduces new deadlock 

scenarios through unsafe optimizations 

•  How do we support blocking constructs 
safely and efficiently? 
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Examples of Blocking Constructs 
Habanero-C 
•  Finish scope 

Blocks until all async tasks 
within the finish scope complete 

•  Future.wait() 
Blocks until the target future 
task has completed 

 

OCR 
•  ocrWait(event) 

Blocks until event is triggered 

•  Remote datablock create 

•  Remote task create 
•  Remove event satisfy 

•  . . . 
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Problem #2: Example 
// This code executes on Worker-A�
auto f0 = hclib::async_future([]() {�
    /* . . . */ });�
// future-task f0 is stolen by Worker-B�
�
auto f1 = hclib::async_future([]() {�
    return f0.wait(); });�
// future-task f1 is stolen by Worker-C�
�
t2: hclib::async([]() { f1.wait(); });�
// above task stolen by Worker-C�
// Worker-C blocks on f0.wait()�
// and starts looking for more work�
// (DEADLOCK!)�

40 

Worker-A Worker-B Worker-C 

async f0�

async f1�

async t2�
...�

steal f0�

running f0�
...�

steal f1�
running f1�
block on f0�

“help”�
steal t2�

block on f1�
...�



Proposed Solution #2 
•  Identify the minimal support needed for 

correct scheduling of blocking constructs in 
OCR, Habanero-C, or similar runtime 

•  Select a range of possible solutions 
•  Evaluate selected solutions for performance 

and programmability tradeoffs 

41 



Proposed Solution #2 
•  Identify the minimal support needed for 

correct scheduling of blocking constructs in 
OCR, Habanero-C, or similar runtime 

•  Select a range of possible solutions 
•  Evaluate selected solutions for performance 

and programmability tradeoffs 
•  See thesis text for full details 
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global-help hcc-cps non-blocking �bers �bers +
�nish-help

threads threads +
�nish-help

Worker Context Strategy

100

101

102
Sl

ow
do

w
n

1.00x

2.07x

14.36x
10.59x

1.44x

446.4x

1.65x

Strategy Overheads: Fibonacci 
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Strategy Recommendations 
•  Use Threads + Finish-Help for development 
•  Use Fibers + Finish-Help in production 
•  Use CPS-transform (compiled or manual) 

for failure-prone production environments 
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Summary of Resolution for #2 
•  Identified previously-undiscovered deadlock 

scenarios in OCR and Habanero-C 
•  Implemented and evaluated several safe 

strategies to handle blocked tasks 
•  Added novel, safe Finish-Helping optimization 
•  Defined guidelines for applying the strategies 
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Outline 
1.  Position-independent object encoding for 

migratable datablocks 
2.  Practical support for blocking constructs in 

lightweight tasking runtimes 

3.  CnC-OCR: a productivity layer for OCR 
4.  Conclusions and future directions 
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OCR: Intended Users 
•  Concurrency experts / “hero programmers” 
•  Library implementers 
•  Compiler back-end engineers 
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Note: mere mortals are not the target users. 



Problem #3: Description 
•  OCR is designed as a low-level API 
•  Higher-level abstractions on top of OCR is 

intended to improve the OCR API 
•  Existing higher-level languages for OCR do 

not stay true to the OCR data model 
(Hierarchically Tiled Arrays, HClib) 
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Proposed Solution #3 
CnC for the Open Community Runtime (OCR): 
–  increase productivity 
– simplify tuning  

– support explicit hierarchy 

49 https://github.com/habanero-rice/cnc-framework 



CnC Programming Model: 
Dependence Programming 

•  Problem partitioned into steps and items  
•  Steps/items partitioned into collections 

•  Step/item instances have unique tags 
•  Dependencies specified relative to tags 
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CnC Programming Model: 
Separation of Concerns 

•  High-level dependence specification 
•  Individual compute step implementations 
•  Platform-specific tuning specification 

51 



CnC-OCR Software Architecture 
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Multiple 
Tuning Specs 

Domain Spec 

Step Code 
CnC API Glue Code 

(auto-generated) 

CnC-OCR Support Module Open Community Runtime 



-- A G C A 

-- 0 -1 -2 -3 -4 

A -1 2 1 0 -1 

C -2 1 0 3 2 

A -3 0 -1 2 5 

C -4 -1 -2 1 4 

A -5 -2 -3 0 3 

CnC Example: Smith-Waterman 
Scoring Matrix 
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CnC Example: Smith-Waterman 
Domain Specification 
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�

[ int above[#tw] : i, j ];�
[ int left[#th]  : i, j ];�
[ SeqData *data : () ];�
�

( swStep: i, j )�
 <- [ data: () ],�
    [ above: i, j ] $when(i > 0),�
    [ left: i, j ]  $when(j > 0)�
 -> [ below @ above: i+1, j ],�
    [ right @ left:  i, j+1 ],�
    ( swStep: i+1, j )�
        $when(i+1 < #nth);�
�
 

item (data) collection declarations 

step-input item dependence relations 

step-output relations (items and steps) 

step collection declaration 



CnC Productivity Results 
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CnC Example: Smith-Waterman 
Tuning Specification 

[ above ]: {�
    distfn: (i / 16) % $RANKS�
};�
�
[ left ]: {�
    distfn: (i / 16) % $RANKS�
};�
�
( swStep ): {�
    placeWith: above�
};�
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Default distribution 
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row-block distribution 



CnC Smith-Waterman 
Distributed Tuning Results 
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C: i

T: i, r
T: i

U: i, r, c

U: i, r

U: i, c

CTUCTU: i

CT: i

TU: i

U: i
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Cholesky Tuned w/CnC Hierarchy: 
Lattice of Step Granularities 
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Habanero CnC-Framework 
•  Over 3300 Logical SLOC 
– C/C++:  2558 Logical SLOC 
–  Python:   818 Logical SLOC 

•  Designed for extensibility 
–  Shared parser code for domain and tuning DSLs 
–  Supports both Intel CnC and OCR as back-ends 
–  Forked to target other runtimes (HCMPI, HPX-5) 

•  Tools for debugging and software hierarchy 
60 



External Research with the 
Habanero CnC-Framework 

•  Communication-avoiding ray tracing for exascale computing 
Ellen Porter, Washington State University, Master's Thesis 

 

•  Improving programmability and performance 
for scientific applications 
Chenyang Liu, Purdue University, PhD Thesis 

 

•  Programming HPX-5 with Concurrent Collections 
Buddhika Chamith, Indiana University, 
PhD Student Poster at SC15 

61 



Summary of Resolution for #3 
•  Integration of CnC model with OCR 
•  Extensible toolchain and DSL design 
–  Support for multiple runtime back-ends 
–  Easily adaptable to new research projects 

•  Novel DSL for performance tuning 
•  First in-depth study of CnC Hierarchy concepts 
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Outline 
1.  Position-independent object encoding for 

migratable datablocks 
2.  Practical support for blocking constructs in 

lightweight tasking runtimes 

3.  CnC-OCR: a productivity layer for OCR 
4.  Conclusions and future directions 
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Summary 
Addressed several runtime challenges for extreme-
scale by improving task and data abstractions: 

1.  Improved programmability & safety of C++ Tempest 
applications on OCR via custom pointer objects 

2.  Improved liveness guarantees & performance for 
scheduling tasks with blocking constructs 

3.  Improved productivity & performance for 
applications on OCR via the CnC-OCR toolchain 
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Conclusions 
•  Higher-level languages and libraries are a critical 

component of a runtime ecosystem 
•  Alternative implementations help avoid forced 

choice between productivity and performance 
•  Separation of concerns can improve productivity 

and facilitate performance tuning 
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Future Work 
•  Compiler / tools support for OCR development: 

–  Datablock alias analysis 
–  Automatic data partitioning 
–  Automatic CPS transformation of blocking code 

•  Static checks for OCR applications: 
–  Data-race detection for OCR applications 
–  Safety determination for global-help scheduling 

•  Higher-level programming models for OCR: 
–  Legion / Realm on OCR 
–  Chapel on OCR 
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Runtime Feature Comparison 
Pointer Safety Blocking High-level languages 

Charm++ Programmer’s 
responsibility 

ucontext Not yet supported 

HPX Programmer’s 
responsibility 

ucontext or 
boost::context 

Not yet supported 

OCR Static and dynamic 
checks 

Many options 
presented 

CnC 

Realm Programmer’s 
responsibility 

ucontext Legion, Regent 

UPC++ No data migration SPMD blocking Not yet supported 
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Backup Slides 
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Note: Counting Lines of Code 
•  USC Universal Code Count (UCC) 
– Contracted by Department of Defense 
–  Standard, open-source tool for estimating the effort 

to create a software project 

•  Logical Source Lines of Code (LSLOC) 
–  Primary metric of UCC 
–  Style-agnostic measurement of lines of code 

71 http://csse.usc.edu/ucc_wp/ 



Similar Problems for 
One-sided Comm & C++ Objects 

A: Use the great Boost.MPI and 
Boost.Serialize libraries! 

72 

Q: How do you transmit C++ 
objects using MPI? 

Comment: Cool! Does this do 
one-sided communication too? 

Reply: No, that doesn’t work… 

http://blogs.cisco.com/performance/how-to-send-cxx-stl-objects-in-mpi 



Classes of Pointers in ocxxr 

73 

Pointer Variant Address Computation Use Case 

T* (native) *this Temporary (non-persisting) data. 

RelPtr<T> *(this + offset) Pointer and target must be located 
within the same datablock. 
(I.e., the relative offset never changes.) 

BasedPtr<T> *(base() + offset) 
base() ==> &block(id) 

Pointer and target probably not located 
within the same datablock. 

BasedDbPtr<T> 
(hybrid) 

if (id.IsValid()) 
  *(base() + offset) 
else 
  *(this + offset)   

Pointer and target sometimes in the 
same datablock, sometimes not. 
Has extra overhead for doing pointer’s 
datablock lookup on assignment. 



Experimental Setup 
Software & Benchmarking 
•  Ubuntu 16.04 LTS (Xenial) 
•  Clang v3.8 

•  100 runs per configuration 
•  95% confidence intervals 

•  Native pointers as baseline 
(can’t run distributed) 

Hardware 
•  Single-node system 

(but also works distributed) 
•  3.50GHz Intel Core i7 

Ivy Bridge 4-core CPU 
•  Turbo boost disabled 

•  8GiB DDR3 
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Benchmarks 
Benchmark Purpose Description 

BinaryTree RelPtr-heavy Builds a binary search tree data structure within a single 
arena datablock, performing a large number of put/get ops. 

HashTable BasedPtr-
heavy 

Builds a hashtable, with buckets of entries distributed across 
multiple datablocks. Performs a large number of put/get ops, 
acquiring buckets on-demand. 

LULESH Mesh access Port of LULESH 2.0 code to ocxxr (based on CnC-OCR port). 

Tempest Motivating 
application 

Small kernel using the Tempest climate-simulation 
framework, modeling a patch on the cube-sphere grid. 

UTS BasedDbPtr-
heavy 

Builds the tree generated by the “Unbalanced Tree Search” 
benchmark across many datablocks. 
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Habanero Programming Model 
•  Hierarchy of concurrency constructs 
–  Increasing expressiveness with more constructs 
–  Better safety guarantees with restricted subset 
–  Has async/finish model (X10) at the core 
–  Extended with futures, data driven tasks and promises 

•  Several implementations exist: 
–  JVM: Habanero Java, HJ-lib, Habanero Scala 
–  C/C++: Habanero-C, HClib 
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Thread Stack + Global Helping 
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Global-Helping and Deadlocks 

The Global-Helping optimization can create 
new deadlock scenarios if and only if it is 

possible to create a dependence from a later 
blocking task to an earlier blocking task. 
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Blocking-support Options 
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Selected Solutions 
•  Compensation with Threads: 

Create a new OS thread each time a worker blocks. 
•  Compensation with Fibers: 

Create a new fiber to each time a worker blocks. 
•  Transform blocking tasks into Semi-coroutines: 

Save task’s continuation when blocking (compiler supported). 
•  Rewrite with Non-blocking constructs: 

Application is written in a fully non-blocking style, using chained 
futures to handle all synchronization (manual CPS transform). 
This makes heavy use of futures with async_await. 

80 



Additional Optimized Variants 
•  Threads + Finish-Helping: 
– Based on Threads, but adds a provably-safe “helping” 

optimization to reduce compensation threads 
–  The Finish-Helping optimization restricts “helping” 

targets to only tasks in the current finish scope 

•  Fibers + Finish-Helping: 
Similar to Threads + Finish-Helping, but using fibers 
rather than OS threads 
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Proofs for Worker Strategies 
•  Global-Helping is safe for async/finish 
•  Precise conditions where Global-Helping-

induced deadlocks can occur 
•  Finish-Helping is safe for all constructs 
•  Deadlock-freedom for async/finish + futures 

requires semi-coroutines (or equivalent) 
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Strategy Overheads: Cholesky 

84 

global-help hcc-cps non-blocking �bers �bers +
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Strategy Overheads: UTS 
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Initial Performance Results 
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Other Considerations 
•  Programmability 
–  Thread-local data breaks with Fibers and HCC 
–  No C++, restricted C support for HCC 
–  Manual transformation to Non-blocking is hard, 

and often performs poorly 
•  Debugging support 
–  Valgrind breaks with Fibers 
–  GDB can inspect blocked tasks with Threads 
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Other Considerations (cont.) 
•  Portability: 
–  Fibers relies on platform-specific assembly 
– HCC toolchain not easily installed 

•  Resilience: 
–  Fibers and Threads result in long-lived blocked tasks 
–  Performance impact if task life exceeds MTBF 
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CnC-OCR Developer Workflow 

Write 
graph spec 

Run translator tool 
(produces skeleton project) 

Flesh-out 
skeleton code 

Run program 
(functionality check) 

debug 

Write 
tuning spec(s) 

Re-run translator tool 
(updates scaffolding code) 

Re-run program 
(performance check) 

fine-tuning 
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CnC / OCR Concept Map 
Concept	
   CnC construct	
   OCR construct	
  

Task classes (code)	
   Step collection	
   EDT template	
  

Task instance	
   Step instance	
   EDT	
  

Data classes (types)	
   Item collection	
   —	
  

Data instance	
   Item instance	
   Datablock	
  

Unique instance identifier	
   Tag	
   GUID	
  

Dependence registration	
   Item get	
   Event add dependence	
  

Dependence satisfaction	
   Item put	
   Event satisfy	
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Extensions to the CnC Graph 
Specification Language 

�

[ int above[#tw] : i, j ];�
[ int left[#th]  : i, j ];�
[ SeqData *data : () ];�
�

( swStep: i, j )�
 <- [ data: () ],�
    [ above: i, j ] $when(i > 0),�
    [ left: i, j ]  $when(j > 0)�
 -> [ below @ above: i+1, j ],�
    [ right @ left:  i, j+1 ],�
    ( swStep: i+1, j )�
        $when(i+1 < #nth);�
�
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•  Item tags (checked) 
•  Sized item arrays 
•  Singleton collections 
•  Conditional I/O 
•  Instance aliases 
•  Global context values 
•  Virtual collection views 



C: i

T: i, r
T: i

U: i, r, c

U: i, r

U: i, c

CTUCTU: i

CT: i

TU: i

U: i

TU: i, r

Cholesky Tuned w/CnC Hierarchy: 
Singleton Slice (Bad) 
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TU: i, rc 
41.6 seconds 
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TU: i, rc 
60.3 seconds 

Cholesky Tuned w/CnC Hierarchy: 
Worst Hierarchy Slice 
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U: i, c
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TU: i

U: i

TU: i, r
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TU: i, rc 
3.2 seconds 

Cholesky Tuned w/CnC Hierarchy: 
Best Hierarchy Slice 



Sample CnC Graph: 
Nth Prime Number 
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-- A G C A 

-- 0 -1 -2 -3 -4 

A -1 2 1 0 -1 

C -2 1 0 3 2 

A -3 0 -1 2 5 

C -4 -1 -2 1 4 

A -5 -2 -3 0 3 

CnC Example: Smith-Waterman 
Scoring Matrix 
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Selection of Hierarchy-based 
Distribution Results for Cholesky 

Hierarchy Slice Run-time* 
( CT: i ) + ( U: i, c ) 3.2 seconds 

( C: i ) + ( T: i, r ) + ( U: i, c ) 5.6 seconds 

( CT: i ) + ( U: i, r ) 9.0 seconds 

( CTU:  ) 41.6 seconds 

( C: i ) + ( T: i, r ) + ( U: i ) 60.3 seconds 
97 *Mean of 5 runs 


