
Enhanced Data and Task
Abstractions for Extreme-scale

Runtime Systems
PhD Thesis by Nick Vrvilo

Department of Computer Science
Rice University

June 30, 2017 Committee: Vivek Sarkar, Corky Cartwright and Lin Zhong

Extreme-scale Computing
•  100-way parallelism on a chip
•  1000-way parallelism on a node
•  Similar energy footprint to current systems

2

exascale
in a data center

petascale
in your lab

terascale
on your desk

gigascale
wearables

Challenges at Extreme-scale
•  Need 100x more parallelism in software
•  Highly constrained memory & bandwidth
•  Frequent failures

3

exascale
in a data center

petascale
in your lab

terascale
on your desk

gigascale
wearables

Extreme-scale Runtimes
•  New runtimes for extreme-scale:
– HPX
– Open Community Runtime (OCR)
– Realm

•  Existing runtimes adapting to extreme-scale:
– Berkeley UPC
– Charm++

4

My contributions are marked in
GREEN

5

Runtime Feature Comparison
Pointer Safety Blocking High-level languages

Charm++ Programmer’s
responsibility

ucontext Not yet supported

HPX Programmer’s
responsibility

ucontext or
boost::context

Not yet supported

OCR Static and dynamic
checks

Many options
presented

CnC

Realm Programmer’s
responsibility

ucontext Legion, Regent

UPC++ No data migration SPMD blocking Not yet supported

6

OCR: Runtime Goals
•  Portability for apps across hardware
•  Resilience as a fundamental design feature
•  Performance through hints and introspection

Note: programmability is not a goal of OCR.
7

OCR: Programming Model
•  Tasks for computation
•  Datablocks for all non-temporary data
•  Events for dependence management

8

OCR: Ecosystem Vision

Hero
Programmer

Smart
Compiler

Higher-level
language

Higher-level
library

Open Community Runtime Framework
(Building Blocks)

Extreme-scale Platforms

R-Stream, ROSE, LLVM CnC, Chapel, …
Legion, HClib,
Habanero-UPC++, …

MPI, GASNet,
OpenSHMEM,
UCX, …

C, C++, Fortran

9

External Runtime Components

Hero
Programmer

Smart
Compiler

Higher-level
language

Higher-level
library

Open Community Runtime Framework
(Building Blocks)

OCR: Intended Users
•  Concurrency experts / “hero programmers”
•  Library implementers
•  Compiler back-end engineers

10

Note: mere mortals are not the target users.

Thesis Statement

We assert that runtime challenges tied to
extreme-scale computing can be solved with

marginal overhead, while also limiting the burden
placed on the application programmer.

11

Our Proposed Solutions
1.  Position-independent object encoding for

migratable datablocks
2.  Practical support for blocking constructs in

lightweight tasking runtimes

3.  CnC-OCR: a productivity layer for OCR

12

Hero
Programmer

Hero
Programmer

Smart
Compiler

Higher-level
language

Higher-level
library

Open Community Runtime Framework
(Building Blocks)

Extreme-scale Platforms

R-Stream, ROSE, LLVM CnC, Chapel, …
Legion, HClib,
Habanero-UPC++, …

MPI, GASNet,
OpenSHMEM,
UCX, …

C, C++, Fortran

13

External Runtime Components

#1 Position-independent object encoding for datablocks

Hero
Programmer

Smart
Compiler

Higher-level
language

Higher-level
library

Open Community Runtime Framework
(Building Blocks)

Extreme-scale Platforms

R-Stream, ROSE, LLVM CnC, Chapel, …
Legion, HClib,
Habanero-UPC++, …

MPI, GASNet,
OpenSHMEM,
UCX, …

C, C++, Fortran

14

External Runtime Components

#2 Practical support for blocking constructs

Hero
Programmer

Smart
Compiler

Higher-level
language

Higher-level
library

Open Community Runtime Framework
(Building Blocks)

Extreme-scale Platforms

R-Stream, ROSE, LLVM CnC, Chapel, …
Legion, HClib,
Habanero-UPC++, …

MPI, GASNet,
OpenSHMEM,
UCX, …

C, C++, Fortran

15

External Runtime Components

#3 CnC-OCR: a productivity layer for OCR

Outline
1.  Position-independent object encoding for

migratable datablocks
2.  Practical support for blocking constructs in

lightweight tasking runtimes

3.  CnC-OCR: a productivity layer for OCR
4.  Conclusions and future directions

16

C++ Gaining Ground in HPC
•  AllScale (EU Horizon 2020)
•  Kokkos (Sandia)
•  Legion (Los Alamos & Stanford)
•  RAJA (Lawrence Livermore)
•  UPC++ (Berkeley)

17

… but OCR only defines a C language API

Problem #1: Description
•  Requirements of OCR data model:
– OCR can move datablocks (whenever not in use)
– OCR treats datablocks as opaque (memcpy contents)
– Moving invalidates pointers into a datablock
– All persistent data must be stored in datablocks

•  Consequence on application code:
– Native pointers cannot be persisted across tasks!

18

Motivating C++ App: Tempest
•  Climate system modeling framework
•  Lead developer: Paul Ullrich (UC Davis)
•  Uses idiomatic C++:
– Aggregate objects
–  STL vectors

•  Port to OCR started
by Gabriele Jost

19

Model

Grid

vector<double>
points

OCR + Tempest: Problems
•  Tempest uses C++…

⇒ extern “C”, static_cast from void*, etc.

•  Tempest expects point-to-point messages
⇒ Rewrite blocking code (manual CPS-transform)

•  Tempest model uses aggregate C++ objects
⇒ ⁇? (segfaults in distributed runs)

20

Node B Node A

Problem #1: Example

21

Task 1

Task 2

Datablock X

0x892e650

Datablock Y

0x57a11b0

Datablock Z

0x7ea5fd0

(Grid*)0x57a11b4

Datablock Y

0x38a8a90 Datablock Z

0xa0fc9e

(Grid*)0x57a11b4 (Grid*)0x57a11b4

?

No Serialization Support in OCR
•  OCR does not support object serialization
– No pre/post-migration hooks for datablocks
– Pure C API also makes serialization difficult

22

•  Assume we added pre/post migration hooks
– Can correctly update intra-datablock pointers
– Still can’t handle inter-datablock pointers

Node B Node A

Problem #1: Example (revisited)

23

Datablock X

0x892e650

Datablock Z

0x7ea5fd0

(Grid*)0x57a11b4

Datablock Y

??? Datablock Z

0xa0fc9e

(Grid*)0x57a11b4

?

Task 2

Datablock Y

0x57a11b0

Proposed Solution #1

Sanitize all objects that are persisted in
datablocks across multiple tasks, using

position-independent C++ “pointer” objects.

24

Node B Node A

Example using Based Pointer

25

Datablock X

0x892e650

Datablock Z

0x7ea5fd0

(Grid*)0x57a11b4

Datablock Y

??? Datablock Z

0xa0fc9e
?

Task 2

Datablock Y

0x57a11b0
«Y»

(Grid*)0x57a11b4 (Grid*) «Y» + 0x4

ocxxr: C++ Support for OCR
•  Provides C++ API support for:
–  Initializing C++ objects within datablocks
– Datablocks as allocation arenas
–  Position-independent pointer objects

•  Additional benefits:
–  Improved static type checking (via templates)
–  Little-to-no overhead from inlined C++ wrappers

•  Comprises 1275 Logical SLOC
26 https://github.com/DaoWen/ocxxr

Classes of Pointers in ocxxr

27

Datablock A Datablock B

RelPtr<T> p1

BasedPtr<T> p2

*

*

BasedDbPtr<T> p3

*
Stack

T* p0

ocxxr: API Example
using namespace ocxxr;

struct Node {

 int value;

 RelPtr<Node> left;

 RelPtr<Node> right;

};

struct Tree {

 RelPtr<Node> root;

 // ... methods ...

};

void SubTask(int i, Arena<Tree> tree) {

 Node *tree_root = tree->root;

 if (i < 10) {

 // ... do something with tree_root ...

 TaskBuilder<decltype(SubTask)> builder = /* ... */;

 builder.CreateTask(i+1, tree);

 } else { Shutdown(); }

}

void MainTask() {

 Arena<Tree> tree = Arena<Tree>::Create(ARENA_SIZE);

 // ... set up tree ...

 TaskBuilder<decltype(SubTask)> builder = /* ... */;

 builder.CreateTask(0, tree);

}

28

Bonus: ocxxr Expressiveness
Fib in ocxxr: 63 LSLOC

void FibContinuation(

 ocxxr::Event<u32> &output,

 ocxxr::Datablock<u32> lhs,

 ocxxr::Datablock<u32> rhs) {

 // left_value + right_value —> output

 lhs.data() += rhs.data();

 rhs.handle().Destroy();

 output.Satisfy(lhs); // type-checked

}

Fib in OCR: 132 LSLOC
ocrGuid_t fib_continuation(

 u32 paramc, u32* paramv,

 u32 depc, ocrEdtDep_t depv[]) {

 // unpacking arguments

 ocrGuid_t output = *(ocrGuid_t*)paramv;

 u32 *lhs = depv[0].ptr;

 u32 *rhs = depv[1].ptr;

 // left_value + right_value —> output

 *lhs += *rhs;

 ocrDbDestroy(depv[1].guid);

 ocrEventSatisfy(output, depv[1].guid);

 return NULL_GUID; // unused return value

} 29

Pointer Conversion Algorithm

30

•  Two main phases:
1.  Identify all types persisted in datablocks
2.  Process class types to convert pointer fields

•  Template instances handled individually
•  Prototyped using Clang LibTooling

https://github.com/DaoWen/ocxxr-ptr-xform

Pointer Conversion Example
struct MyNode {

 double value;

 MyNode *next;

};

void MyTask(ocxxr::Arena<MyNode> arena) {

 MyNode *head = arena.data_ptr();

 MyNode *next = arena.New<MyNode>();

 next->value = 1234.56;

 // the pointer and its addressee

 // are within the same datablock

 head->next = next;

}

31

 MyNode *next; ocxxr::BasedDbPtr<MyNode> next;

1.  Identify types τ in task
dependence inputs

2.  Find all pointer members
of the class type τ

3.  Replace pointer types
with BasedDbPtr types

4.  Recursively fix pointers in
BasedDbPtr target types

void MyTask(ocxxr::Arena<MyNode> arena) {

 ocxxr::BasedDbPtr<MyNode> next;

Algorithm Limitations

32

•  Does not find types “hidden” by casts
void* → SomeType*

•  Does not handle C++ STL classes (allocators)
•  May transform classes used in temporary data
•  Currently lacks alias analysis: cannot identify

safe candidates for representation as RelPtr<T>

Slowdown vs Native Pointers
Benchmark Position-independent

BinaryTree 1.130 ± 0.037

HashTable 1.002 ± 0.029

LULESH 1.005 ± 0.018

Tempest 0.997 ± 0.028

UTS 1.002 ± 0.051

33

Error margins give 95% confidence interval

No significant delta 13%

Slowdown ~ Pointer Operations
Slowdown vs Native Pointers Pointer Operation Densities

34

13% 30%–50% of all cycles

BinaryTree Benchmark
Slowdowns for Pointer Variants

Variant Slowdown

T* (native) 1.000 ± .036

RelPtr<T> 1.136 ± .042

BasedPtr<T> 3.578 ± .095

BasedDbPtr<T> 2.338 ± .042

35

Error margins give 95% confidence interval

Summary of Resolution for #1
•  ocxxr library: C++ support for OCR
–  Safe pointer-object encoding in datablocks
–  Enabled porting C++ framework to OCR

–  Marginal overhead measured in real kernels

•  Conservative pointer-conversion algorithm
with Clang-based transformation tool

36

Outline
1.  Position-independent object encoding for

migratable datablocks
2.  Practical support for blocking constructs in

lightweight tasking runtimes

3.  CnC-OCR: a productivity layer for OCR
4.  Conclusions and future directions

37

Problem #2: Description
•  Default scheduling strategy in OCR and

HClib does not properly support blocking
•  The runtime introduces new deadlock

scenarios through unsafe optimizations

•  How do we support blocking constructs
safely and efficiently?

38

Examples of Blocking Constructs
Habanero-C
•  Finish scope

Blocks until all async tasks
within the finish scope complete

•  Future.wait()
Blocks until the target future
task has completed

OCR
•  ocrWait(event)

Blocks until event is triggered

•  Remote datablock create

•  Remote task create
•  Remove event satisfy

•  . . .

39

Problem #2: Example
// This code executes on Worker-A�
auto f0 = hclib::async_future([]() {�
 /* . . . */ });�
// future-task f0 is stolen by Worker-B�
�
auto f1 = hclib::async_future([]() {�
 return f0.wait(); });�
// future-task f1 is stolen by Worker-C�
�
t2: hclib::async([]() { f1.wait(); });�
// above task stolen by Worker-C�
// Worker-C blocks on f0.wait()�
// and starts looking for more work�
// (DEADLOCK!)�

40

Worker-A Worker-B Worker-C

async f0�

async f1�

async t2�
...�

steal f0�

running f0�
...�

steal f1�
running f1�
block on f0�

“help”�
steal t2�

block on f1�
...�

Proposed Solution #2
•  Identify the minimal support needed for

correct scheduling of blocking constructs in
OCR, Habanero-C, or similar runtime

•  Select a range of possible solutions
•  Evaluate selected solutions for performance

and programmability tradeoffs

41

Proposed Solution #2
•  Identify the minimal support needed for

correct scheduling of blocking constructs in
OCR, Habanero-C, or similar runtime

•  Select a range of possible solutions
•  Evaluate selected solutions for performance

and programmability tradeoffs
•  See thesis text for full details

42

global-help hcc-cps non-blocking �bers �bers +
�nish-help

threads threads +
�nish-help

Worker Context Strategy

100

101

102
Sl

ow
do

w
n

1.00x

2.07x

14.36x
10.59x

1.44x

446.4x

1.65x

Strategy Overheads: Fibonacci

43

446.6x

Strategy Recommendations
•  Use Threads + Finish-Help for development
•  Use Fibers + Finish-Help in production
•  Use CPS-transform (compiled or manual)

for failure-prone production environments

44

Summary of Resolution for #2
•  Identified previously-undiscovered deadlock

scenarios in OCR and Habanero-C
•  Implemented and evaluated several safe

strategies to handle blocked tasks
•  Added novel, safe Finish-Helping optimization
•  Defined guidelines for applying the strategies

45

Outline
1.  Position-independent object encoding for

migratable datablocks
2.  Practical support for blocking constructs in

lightweight tasking runtimes

3.  CnC-OCR: a productivity layer for OCR
4.  Conclusions and future directions

46

OCR: Intended Users
•  Concurrency experts / “hero programmers”
•  Library implementers
•  Compiler back-end engineers

47

Note: mere mortals are not the target users.

Problem #3: Description
•  OCR is designed as a low-level API
•  Higher-level abstractions on top of OCR is

intended to improve the OCR API
•  Existing higher-level languages for OCR do

not stay true to the OCR data model
(Hierarchically Tiled Arrays, HClib)

48

Proposed Solution #3
CnC for the Open Community Runtime (OCR):
–  increase productivity
– simplify tuning

– support explicit hierarchy

49 https://github.com/habanero-rice/cnc-framework

CnC Programming Model:
Dependence Programming

•  Problem partitioned into steps and items
•  Steps/items partitioned into collections

•  Step/item instances have unique tags
•  Dependencies specified relative to tags

50

CnC Programming Model:
Separation of Concerns

•  High-level dependence specification
•  Individual compute step implementations
•  Platform-specific tuning specification

51

CnC-OCR Software Architecture

52

Multiple
Tuning Specs

Domain Spec

Step Code
CnC API Glue Code

(auto-generated)

CnC-OCR Support Module Open Community Runtime

-- A G C A

-- 0 -1 -2 -3 -4

A -1 2 1 0 -1

C -2 1 0 3 2

A -3 0 -1 2 5

C -4 -1 -2 1 4

A -5 -2 -3 0 3

CnC Example: Smith-Waterman
Scoring Matrix

53

CnC Example: Smith-Waterman
Domain Specification

54

�

[int above[#tw] : i, j];�
[int left[#th] : i, j];�
[SeqData *data : ()];�
�

(swStep: i, j)�
 <- [data: ()],�
 [above: i, j] $when(i > 0),�
 [left: i, j] $when(j > 0)�
 -> [below @ above: i+1, j],�
 [right @ left: i, j+1],�
 (swStep: i+1, j)�
 $when(i+1 < #nth);�
�

item (data) collection declarations

step-input item dependence relations

step-output relations (items and steps)

step collection declaration

CnC Productivity Results

55

229
284

439

143 133

300

0

100

200

300

400

500

Smith-Waterman Cholesky Nth Prime

Lo
gi

ca
l S

ou
rc

e
Li

ne
s

of

C
od

e

OCR CnC (user)

0

1

2

3

4

5

6

1 2 4 8 16

Ex
ec

ut
io

n
ti

m
e

(s
ec

on
ds

)

Number of workers

icnc cnc-ocr ocr

CnC Cholesky
Performance Results

56

Intel CnC (TBB) CnC-OCR OCR

CnC Example: Smith-Waterman
Tuning Specification

[above]: {�
 distfn: (i / 16) % $RANKS�
};�
�
[left]: {�
 distfn: (i / 16) % $RANKS�
};�
�
(swStep): {�
 placeWith: above�
};�

57

Default distribution
(cyclic on last tag
component: column)

Customized
row-block distribution

CnC Smith-Waterman
Distributed Tuning Results

58

115.4 141.5

0

10

20

30

40

50

1 2 4 8 Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Node Count

CnC-OCR Default CnC-OCR Row-Block iCnC Row-Block Intel CnC (TBB) Row-Block

C: i

T: i, r
T: i

U: i, r, c

U: i, r

U: i, c

CTUCTU: i

CT: i

TU: i

U: i

TU: i, r

Cholesky Tuned w/CnC Hierarchy:
Lattice of Step Granularities

59

TU: i, rc

Habanero CnC-Framework
•  Over 3300 Logical SLOC
– C/C++: 2558 Logical SLOC
–  Python: 818 Logical SLOC

•  Designed for extensibility
–  Shared parser code for domain and tuning DSLs
–  Supports both Intel CnC and OCR as back-ends
–  Forked to target other runtimes (HCMPI, HPX-5)

•  Tools for debugging and software hierarchy
60

External Research with the
Habanero CnC-Framework

•  Communication-avoiding ray tracing for exascale computing
Ellen Porter, Washington State University, Master's Thesis

•  Improving programmability and performance
for scientific applications
Chenyang Liu, Purdue University, PhD Thesis

•  Programming HPX-5 with Concurrent Collections
Buddhika Chamith, Indiana University,
PhD Student Poster at SC15

61

Summary of Resolution for #3
•  Integration of CnC model with OCR
•  Extensible toolchain and DSL design
–  Support for multiple runtime back-ends
–  Easily adaptable to new research projects

•  Novel DSL for performance tuning
•  First in-depth study of CnC Hierarchy concepts

62

Outline
1.  Position-independent object encoding for

migratable datablocks
2.  Practical support for blocking constructs in

lightweight tasking runtimes

3.  CnC-OCR: a productivity layer for OCR
4.  Conclusions and future directions

63

Summary
Addressed several runtime challenges for extreme-
scale by improving task and data abstractions:

1.  Improved programmability & safety of C++ Tempest
applications on OCR via custom pointer objects

2.  Improved liveness guarantees & performance for
scheduling tasks with blocking constructs

3.  Improved productivity & performance for
applications on OCR via the CnC-OCR toolchain

64

Conclusions
•  Higher-level languages and libraries are a critical

component of a runtime ecosystem
•  Alternative implementations help avoid forced

choice between productivity and performance
•  Separation of concerns can improve productivity

and facilitate performance tuning

65

Future Work
•  Compiler / tools support for OCR development:

–  Datablock alias analysis
–  Automatic data partitioning
–  Automatic CPS transformation of blocking code

•  Static checks for OCR applications:
–  Data-race detection for OCR applications
–  Safety determination for global-help scheduling

•  Higher-level programming models for OCR:
–  Legion / Realm on OCR
–  Chapel on OCR

66

Acknowledgements
•  Committee: Thanks for your time and input!

•  Habanero Team: It’s been great working with you!

•  Intel X-Stack Team: Thanks for your mentorship and
support! I really enjoyed working with all of you!

This material is based upon work supported by the Department of Energy,
Office of Science, under Award Number DE-SC0008717.

67

Runtime Feature Comparison
Pointer Safety Blocking High-level languages

Charm++ Programmer’s
responsibility

ucontext Not yet supported

HPX Programmer’s
responsibility

ucontext or
boost::context

Not yet supported

OCR Static and dynamic
checks

Many options
presented

CnC

Realm Programmer’s
responsibility

ucontext Legion, Regent

UPC++ No data migration SPMD blocking Not yet supported

68 Ω

Backup Slides

69

Related Publications
•  A Marshalled Data Format for Pointers in Relocatable Data Blocks.

Nick Vrvilo, Lechen Yu and Vivek Sarkar.
The 2017 International Symposium on Memory Management (ISMM). June 2017.

•  Declarative Tuning for Locality in Parallel Programs.

Sanjay Chatterjee, Nick Vrvilo, Zoran Budimlic, Kathleen Knobe, Vivek Sarkar.
The 45th International Conference on Parallel Processing (ICPP), August 2016.

•  The CnC work has been presented at multiple CnC Workshops and at multiple

Intel X-Stack Traleika Glacier Project Workshops.

70

Note: Counting Lines of Code
•  USC Universal Code Count (UCC)
– Contracted by Department of Defense
–  Standard, open-source tool for estimating the effort

to create a software project

•  Logical Source Lines of Code (LSLOC)
–  Primary metric of UCC
–  Style-agnostic measurement of lines of code

71 http://csse.usc.edu/ucc_wp/

Similar Problems for
One-sided Comm & C++ Objects

A: Use the great Boost.MPI and
Boost.Serialize libraries!

72

Q: How do you transmit C++
objects using MPI?

Comment: Cool! Does this do
one-sided communication too?

Reply: No, that doesn’t work…

http://blogs.cisco.com/performance/how-to-send-cxx-stl-objects-in-mpi

Classes of Pointers in ocxxr

73

Pointer Variant Address Computation Use Case

T* (native) *this Temporary (non-persisting) data.

RelPtr<T> *(this + offset) Pointer and target must be located
within the same datablock.
(I.e., the relative offset never changes.)

BasedPtr<T> *(base() + offset)
base() ==> &block(id)

Pointer and target probably not located
within the same datablock.

BasedDbPtr<T>
(hybrid)

if (id.IsValid())
 *(base() + offset)
else
 *(this + offset)

Pointer and target sometimes in the
same datablock, sometimes not.
Has extra overhead for doing pointer’s
datablock lookup on assignment.

Experimental Setup
Software & Benchmarking
•  Ubuntu 16.04 LTS (Xenial)
•  Clang v3.8

•  100 runs per configuration
•  95% confidence intervals

•  Native pointers as baseline
(can’t run distributed)

Hardware
•  Single-node system

(but also works distributed)
•  3.50GHz Intel Core i7

Ivy Bridge 4-core CPU
•  Turbo boost disabled

•  8GiB DDR3

74

Benchmarks
Benchmark Purpose Description

BinaryTree RelPtr-heavy Builds a binary search tree data structure within a single
arena datablock, performing a large number of put/get ops.

HashTable BasedPtr-
heavy

Builds a hashtable, with buckets of entries distributed across
multiple datablocks. Performs a large number of put/get ops,
acquiring buckets on-demand.

LULESH Mesh access Port of LULESH 2.0 code to ocxxr (based on CnC-OCR port).

Tempest Motivating
application

Small kernel using the Tempest climate-simulation
framework, modeling a patch on the cube-sphere grid.

UTS BasedDbPtr-
heavy

Builds the tree generated by the “Unbalanced Tree Search”
benchmark across many datablocks.

75

Habanero Programming Model
•  Hierarchy of concurrency constructs
–  Increasing expressiveness with more constructs
–  Better safety guarantees with restricted subset
–  Has async/finish model (X10) at the core
–  Extended with futures, data driven tasks and promises

•  Several implementations exist:
–  JVM: Habanero Java, HJ-lib, Habanero Scala
–  C/C++: Habanero-C, HClib

76

Thread Stack + Global Helping

77

Task A
blocked

Task A
blocked

Task B
. . .

blocked

Help!

Task A
ready

Task B
. . .

blocked

Task C
. . .

Help!

Task A
ready

Task B
. . .

ready

Task A
. . .

. . .

time

Global-Helping and Deadlocks

The Global-Helping optimization can create
new deadlock scenarios if and only if it is

possible to create a dependence from a later
blocking task to an earlier blocking task.

78

Blocking-support Options

79

semi-coroutines

coroutines

fibers
(cooperative)

threads
(preemptive)

undelimited (one-shot)
continuations

delimited (one-shot)
continuations

coroutines

undelimited (one-shot)
continuations

delimited (one-shot)
continuations

le
as

t t
o

m
os

t e
xp

re
ss

iv
e

Selected Solutions
•  Compensation with Threads:

Create a new OS thread each time a worker blocks.
•  Compensation with Fibers:

Create a new fiber to each time a worker blocks.
•  Transform blocking tasks into Semi-coroutines:

Save task’s continuation when blocking (compiler supported).
•  Rewrite with Non-blocking constructs:

Application is written in a fully non-blocking style, using chained
futures to handle all synchronization (manual CPS transform).
This makes heavy use of futures with async_await.

80

Additional Optimized Variants
•  Threads + Finish-Helping:
– Based on Threads, but adds a provably-safe “helping”

optimization to reduce compensation threads
–  The Finish-Helping optimization restricts “helping”

targets to only tasks in the current finish scope

•  Fibers + Finish-Helping:
Similar to Threads + Finish-Helping, but using fibers
rather than OS threads

81

Proofs for Worker Strategies
•  Global-Helping is safe for async/finish
•  Precise conditions where Global-Helping-

induced deadlocks can occur
•  Finish-Helping is safe for all constructs
•  Deadlock-freedom for async/finish + futures

requires semi-coroutines (or equivalent)
82

�b cholesky needleman-
wunsch

nqueens qsort uts
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Sl

ow
do

w
n

global-help
hcc-cps

non-blocking
�bers

�bers+�nish-help
threads

threads+�nish-help

Strategy Overheads

83

Strategy Overheads: Cholesky

84

global-help hcc-cps non-blocking �bers �bers +
�nish-help

threads threads +
�nish-help

Worker Context Strategy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sl
ow

do
w

n
1.00x

0.88x

1.05x
0.98x 0.97x 1.03x 1.04x

0.88x

No C++ closure overheads

Strategy Overheads: UTS

85

global-help hcc-cps non-blocking �bers �bers +
�nish-help

threads threads +
�nish-help

Worker Context Strategy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sl
ow

do
w

n
1.00x

1.20x

1.00x 0.99x 1.02x 1.01x 1.00x

1.20x extra malloc()
(closure restriction on arrays)

Initial Performance Results

86

Other Considerations
•  Programmability
–  Thread-local data breaks with Fibers and HCC
–  No C++, restricted C support for HCC
–  Manual transformation to Non-blocking is hard,

and often performs poorly
•  Debugging support
–  Valgrind breaks with Fibers
–  GDB can inspect blocked tasks with Threads

87

Other Considerations (cont.)
•  Portability:
–  Fibers relies on platform-specific assembly
– HCC toolchain not easily installed

•  Resilience:
–  Fibers and Threads result in long-lived blocked tasks
–  Performance impact if task life exceeds MTBF

88

CnC-OCR Developer Workflow

Write
graph spec

Run translator tool
(produces skeleton project)

Flesh-out
skeleton code

Run program
(functionality check)

debug

Write
tuning spec(s)

Re-run translator tool
(updates scaffolding code)

Re-run program
(performance check)

fine-tuning

89

CnC / OCR Concept Map
Concept	
 CnC construct	
 OCR construct	

Task classes (code)	
 Step collection	
 EDT template	

Task instance	
 Step instance	
 EDT	

Data classes (types)	
 Item collection	
 —	

Data instance	
 Item instance	
 Datablock	

Unique instance identifier	
 Tag	
 GUID	

Dependence registration	
 Item get	
 Event add dependence	

Dependence satisfaction	
 Item put	
 Event satisfy	

90

Extensions to the CnC Graph
Specification Language

�

[int above[#tw] : i, j];�
[int left[#th] : i, j];�
[SeqData *data : ()];�
�

(swStep: i, j)�
 <- [data: ()],�
 [above: i, j] $when(i > 0),�
 [left: i, j] $when(j > 0)�
 -> [below @ above: i+1, j],�
 [right @ left: i, j+1],�
 (swStep: i+1, j)�
 $when(i+1 < #nth);�
�

91

•  Item tags (checked)
•  Sized item arrays
•  Singleton collections
•  Conditional I/O
•  Instance aliases
•  Global context values
•  Virtual collection views

C: i

T: i, r
T: i

U: i, r, c

U: i, r

U: i, c

CTUCTU: i

CT: i

TU: i

U: i

TU: i, r

Cholesky Tuned w/CnC Hierarchy:
Singleton Slice (Bad)

92

TU: i, rc
41.6 seconds

C: i

T: i, r
T: i

U: i, r, c

U: i, r

U: i, c

CTUCTU: i

CT: i

TU: i

U: i

TU: i, r

93

TU: i, rc
60.3 seconds

Cholesky Tuned w/CnC Hierarchy:
Worst Hierarchy Slice

C: i

T: i, r
T: i

U: i, r, c

U: i, r

U: i, c

CTUCTU: i

CT: i

TU: i

U: i

TU: i, r

94

TU: i, rc
3.2 seconds

Cholesky Tuned w/CnC Hierarchy:
Best Hierarchy Slice

Sample CnC Graph:
Nth Prime Number

95

-- A G C A

-- 0 -1 -2 -3 -4

A -1 2 1 0 -1

C -2 1 0 3 2

A -3 0 -1 2 5

C -4 -1 -2 1 4

A -5 -2 -3 0 3

CnC Example: Smith-Waterman
Scoring Matrix

96

Selection of Hierarchy-based
Distribution Results for Cholesky

Hierarchy Slice Run-time*
(CT: i) + (U: i, c) 3.2 seconds

(C: i) + (T: i, r) + (U: i, c) 5.6 seconds

(CT: i) + (U: i, r) 9.0 seconds

(CTU:) 41.6 seconds

(C: i) + (T: i, r) + (U: i) 60.3 seconds
97 *Mean of 5 runs

