
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

August 29, 2019

Homework 0
• Please follow these instructions for checking out your turnin repository as soon as

possible:

• Follow the instructions under Homework Submission Guide at the Course Website

• Submit a hw_0 folder with a single file HelloWorld.txt and a single line of text,
Hello, world!

• This submission is not for credit

• We will let you know if we have not received your submission

• You will be responsible for successfully submitting your hw_1 assignment using
turnin

• Please bring problems to our attention as soon as possible

2

https://wiki.rice.edu/confluence/display/FPSCALA/Homework+Submission+Guide
https://comp311.rice.edu/

A New Paradigm

• Set aside what you’ve learned about programming

• The style we will practice might seem unfamiliar at first

• Initially, the material will seem quite basic

• We will build a solid foundation that will enable us to
explore advanced topics

3

A New Paradigm

• We will re-examine many things we’ve (partially)
learned

• Often in life, the way forward is to rethink our
assumptions

• Later, we can integrate what we’ve learned into our
larger body of knowledge

4

Our first exposure to
pure computation:

Arithmetic

5

4 + 5 = 9

6

4 + 5 ↦ 9

expressions are reduced to values

7

Critical Intuition
● Reduction rules (although typically written using

conventional [concrete] syntax) work on abstract
syntax trees (ASTs).

● Every expression in conventional (concrete) syntax
corresponds to an abstract syntax tree.

● Example: (4 + 1) × (5 + 3)

×

+ +

4 1 5 3
8

Critical Intuition II
• Tree structure is typically encoded in concrete

syntax using parentheses
• Example:

normal function application notation, e.g.,
prod(sum(3,1), sum(5,3))

• Expressions with parentheses are hard for humans
to read so common mathematical notation heavily
relies on infix notation for binary operators and
precedence conventions, e.g.,
2 + 3 × 6 vs. 2 × 3 + 6

• Thinking about syntax in terms of ASTs simplifies
reduction rules

9

Expressions are Reduced to
Values

• Rules for a fixed set of operators:

• 4 + 5 ↦ 9

• 4 - 5 ↦ -1

• 4 × 5 ↦ 20

• 9 / 3 ↦ 3

• 42 ↦ 16

• √4 ↦ 2

10

Expressions are Reduced to
Values

To reduce an operator applied to expressions, first reduce
the subexpressions, left to right:

(4 + 1) × (5 + 3) ↦

5 × (5 + 3) ↦

5 × 8 ↦

40

11

Expressions are Reduced to
Values

A precedence is defined on operators to help us decide
what to reduce next:

4 + 1 × 5 + 3 ↦

4 + 5 + 3 ↦

9 + 3 ↦

12

12

New Operations Often Introduce
New Types of Values

• 4 + 5 ↦ 9

• 4 - 5 ↦ -1

• 4 × 5 ↦ 20

• 4 / 5 ↦ 0.8

• 42 ↦ 16

• √-1 ↦ i

13

Old Operations on New Types of Values
Often Introduce Yet More New Types of

Values

1 + i

14

So, what are types?

15

Values Have
Value Types

Definition: A value type is a name for a collection of
values with common properties.

16

Values Have
Value Types

• Examples of value types:

• Natural numbers

• Integers

• Floating point numbers

• And many more

17

Expressions Have
Static Types

Definition (Attempt 1): A static type is an assertion that
an expression reduces to a value with a particular value

type.

18

Expressions Have
Static Types

4 + 5: 𝐍 ↦ 9: 𝐍

Static Type Value Type

19

Rules for Static Types

• If an expression is a value, its static type is its value type

5: 𝐍
• With each operator, there are “if-then” rules stating the

required static types of the operands, and the static type of
the application:

Integer Addition: If the operands to + are of type N
then the application is of type N

20

Expressions Have
Static Types

Definition (Attempt 1): A static type is an assertion that
an expression reduces to a value with a particular value

type.

Not quite.

21

Expressions Have
Static Types

16 / 20: 𝐐 ↦ 0.8: 𝐐
So far, so good…

22

Expressions Have
Static Types

16 / 0: 𝐐 ↦ ?

23

Expressions Have
Static Types

Definition (Attempt 2): A static type is an assertion that
either an expression reduces to a value with a particular

value type, or one of a well-defined set of exceptional
events occurs.

24

Why Static Types?

• Using our rules, we can determine whether an
expression has a static type.

• If it does, we say the expression is well-typed, and we
know that proceeding with our computation is type
safe:

Either our computation will finish with a value of the
determined value type, or one of a well-defined
exceptional events will occur.

25

What Constitutes the Set of Well-Defined
Exceptional Events in Arithmetic?

• A “division by zero” error

• What else?

26

What are the Well-Defined
Exceptional Events in Arithmetic?

• A “division by zero” error

• What if we run out of paper?

• Or pencil lead? Or erasers?

• What if we run out of time?

27

What Constitutes the Set of Well-Defined
Exceptional Events in Arithmetic?

• A “division by zero” error

• We run out of some finite resource

28

Our second exposure
to pure computation:

Algebra

29

Now, We Learn How to Define Our
Own Operators (a.k.a. functions)

f(x) = 2x + 1

f(x, y) = x2 + y2

30

And We Learn How to
Compute With Them

f(x) = 2x + 1

f(3 + 2) ↦

f(5) ↦

(2 × 5) + 1 ↦

10 + 1 ↦

11

31

The Substitution Rule of
Computation

• To reduce an application of a function to a set of
arguments:

• Reduce the arguments, left to right

• Reduce the body of the function, with each
parameter replaced by the corresponding argument

32

Using the Substitution Rule

f(x, y) = x2 + y2

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

-12 + 42 ↦

1 + 16 ↦

17

33

What About Types?

• Eventually, we learn that our functions need to include
rules indicating the required types of their arguments,
and the types of applications

• You might have seen notation like this in a math class:

f: 𝐙 → 𝐙

34

Typing Rules for Functions

f: 𝐙 → 𝐙
What does this rule mean?

35

Typing Rules for Functions

f: 𝐙 → 𝐙
• We can interpret the arrow as denoting data flow:

The function f consumes arguments with value type 𝐙 and
produces values with value type 𝐙

(or one of a well-defined set of exceptional events occurs).

36

Typing Rules for Functions

f: 𝐙 → 𝐙
• We can also interpret the arrow as logical implication:

If f is applied to an argument expression with static type 𝐙
then the application expression has static type 𝐙.

37

What are The Exceptional
Events in Algebra?

• A “division by zero” error

• We run out of some finite resource

• What else?

38

The Substitution Rule Allows for
Computations that Never Finish

f: 𝐙 × 𝐙 → 𝐙

f(x, y) = f(x, y)

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

f(-1, 4) ↦

…

39

The Substitution Rule Allows for
Computations that Keep Getting Larger

f: 𝐙 × 𝐙 → 𝐙

f(x, y) = f(f(x, y), f(x, y))

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

f(f(-1, 4), f(-1, 4)) ↦

f(f(f(-1, 4), f(-1, 4)), f(f(-1, 4), f(-1, 4))) ↦

…

40

But We Need at Least Limited Recursion to
Define Common Algebraic Constructs

{ 1 if n = 0

n (n –1)! if n > 0
n ! =

! :
𝐍→𝐍

41

What are The Exceptional
Events in Algebra?

• A “division by zero” error

• We run out of some finite resource

• The computation never stops
(unbounded time)

• The computation keeps getting larger
(unbounded space)

42

A new exposure to
pure computation:

Core Scala

43

Core Scala

• We will continue to use algebra as our model of
computation

• We will switch to Scala syntax

• We will introduce new value types

44

Value Types in Core Scala

Int: -3, -2, -1, 0, 1, 2, 3

Double: 1.414, 2.718, 3.14, ∞

Boolean: false, true

String: “Hello, world!”

45

Primitive Operators on Ints
and Doubles in Core Scala

Algebraic operators:

e + eʹ e - eʹ e * eʹ e / eʹ

• For each operator:

• If both arguments to an application of an operator are of
type Int then the application is of type Int

• If both arguments to an application of an operator are of
type Double then the application is of type Double

46

Primitive Operators on Ints
and Doubles in Core Scala

Comparison operators:

e == eʹ e <= eʹ e >= eʹ e != e'

e > eʹ e < eʹ

• For each operator:

• If both arguments to an application of an operator are of type
Int then the application is of type Boolean

• If both arguments to an application of an operator are of type
Double then the application is of type Boolean

47

Some Primitive Operators on
Booleans in Core Scala

Conjunction, Disjunction:

e & eʹ e | eʹ

• In both cases:

• If both arguments to an application are of type
Boolean then the application is of type Boolean

48

More Primitive Operators on
Booleans in Core Scala

Negation:

! e

• If the argument to an application is of type Boolean
then the application is of type Boolean

49

Yet More Primitive Operators
on Booleans in Core Scala

Conditional Expressions:

if (e) eʹ else eʹʹ

• If the first argument is of type Boolean and the second
and third argument are of the same type 𝑇 then the
application is of type 𝑇

50

Primitive Operators on Strings
in Core Scala

String Concatenation:

e + eʹ

• If both arguments are of type String then the
application is of type String

51

An Example Function
Definition in Core Scala

def square(x: Double) = x * x

52

Syntax for Defining Functions

• If there is no recursion, we may elide the return type:

def fnName(arg0: type0, …, argk: typek): returnType =

expr

def fnName(arg0: type0, …, argk: typek) =

expr

53

The Substitution Rule Works
as Before

def square(x: Double) = x * x

square(2.0 * 3.0) ↦
square(6.0) ↦
6.0 * 6.0 ↦

36.0

54

