Comp 311
 Functional Programming

Nick Vrvilo, Two Sigma Investments Robert "Corky" Cartwright, Rice University

August 29, 2019

Homework 0

- Please follow these instructions for checking out your turnin repository as soon as possible:
- Follow the instructions under Homework Submission Guide at the Course Website
- Submit a hw_0 folder with a single file HelloWorld.txt and a single line of text, Hello, world!
- This submission is not for credit
- We will let you know if we have not received your submission
- You will be responsible for successfully submitting your hw_1 assignment using turnin
- Please bring problems to our attention as soon as possible

A New Paradigm

- Set aside what you've learned about programming
- The style we will practice might seem unfamiliar at first
- Initially, the material will seem quite basic
- We will build a solid foundation that will enable us to explore advanced topics

A New Paradigm

- We will re-examine many things we've (partially) learned
- Often in life, the way forward is to rethink our assumptions
- Later, we can integrate what we've learned into our larger body of knowledge

Our first exposure to pure computation: Arithmetic

$4+5=9$

$$
4+5 \mapsto 9
$$

expressions are reduced to values

Critical Intuition

- Reduction rules (although typically written using conventional [concrete] syntax) work on abstract syntax trees (ASTs).
- Every expression in conventional (concrete) syntax corresponds to an abstract syntax tree.
- Example:

$$
(4+1) \times(5+3)
$$

Critical Intuition II

- Tree structure is typically encoded in concrete syntax using parentheses
- Example: normal function application notation, e.g., $\operatorname{prod}(\operatorname{sum}(3,1)$, $\operatorname{sum}(5,3))$
- Expressions with parentheses are hard for humans to read so common mathematical notation heavily relies on infix notation for binary operators and precedence conventions, e.g.,
$2+3 \times 6$ vs. $2 \times 3+6$
- Thinking about syntax in terms of ASTs simplifies reduction rules

Expressions are Reduced to Values

- Rules for a fixed set of operators:
- $4+5 \mapsto 9$
. $4-5 \mapsto-1$
- $4 \times 5 \mapsto 20$
- $9 / 3 \mapsto 3$
- $4^{2} \mapsto 16$
- $\sqrt{4} \mapsto 2$

Expressions are Reduced to Values

To reduce an operator applied to expressions, first reduce the subexpressions, left to right:

$$
\begin{gathered}
(4+1) \times(5+3) \mapsto \\
5 \times(5+3) \mapsto \\
5 \times 8 \mapsto
\end{gathered}
$$

Expressions are Reduced to Values

A precedence is defined on operators to help us decide what to reduce next:

$$
\begin{gathered}
4+1 \times 5+3 \mapsto \\
4+5+3 \mapsto
\end{gathered}
$$

$$
9+3 \mapsto
$$

New Operations Often Introduce New Types of Values

- $4+5 \mapsto 9$
- 4-5 -1
- $4 \times 5 \mapsto 20$
- $4 / 5 \mapsto 0.8$
- $4^{2} \mapsto 16$
- $\sqrt{ }-1 \mapsto \mathrm{i}$

Old Operations on New Types of Values Often Introduce Yet More New Types of Values

$$
1+i
$$

So, what are types?

Values Have Value Types

Definition: A value type is a name for a collection of values with common properties.

Values Have Value Types

- Examples of value types:
- Natural numbers
- Integers
- Floating point numbers
- And many more

Expressions Have Static Types

Definition (Attempt 1): A static type is an assertion that an expression reduces to a value with a particular value type.

Expressions Have Static Types

Rules for Static Types

- If an expression is a value, its static type is its value type

$$
5: \mathbf{N}
$$

- With each operator, there are "if-then" rules stating the required static types of the operands, and the static type of the application:

Integer Addition: If the operands to + are of type \mathbf{N} then the application is of type \mathbf{N}

Expressions Have Static Types

Definition (Attempt 1): A static type is an assertion that an expression reduces to a value with a particular value type.

Not quite.

Expressions Have Static Types

16 / 20: $\mathbf{Q} \mapsto 0.8: \mathbf{Q}$

So far, so good...

Expressions Have Static Types

$$
16 / 0: \mathbf{Q} \mapsto ?
$$

Expressions Have Static Types

Definition (Attempt 2): A static type is an assertion that either an expression reduces to a value with a particular value type, or one of a well-defined set of exceptional events occurs.

Why Static Types?

- Using our rules, we can determine whether an expression has a static type.
- If it does, we say the expression is well-typed, and we know that proceeding with our computation is type safe:

Either our computation will finish with a value of the determined value type, or one of a well-defined exceptional events will occur.

What Constitutes the Set of Well-Defined Exceptional Events in Arithmetic?

- A"division by zero" error
- What else?

What are the Well-Defined Exceptional Events in Arithmetic?

- A"division by zero" error
- What if we run out of paper?
- Or pencil lead? Or erasers?
- What if we run out of time?

What Constitutes the Set of Well-Defined Exceptional Events in Arithmetic?

- A"division by zero" error
- We run out of some finite resource

Our second exposure to pure computation: Algebra

Now, We Learn How to Define Our Own Operators (a.k.a. functions)

$$
\begin{gathered}
f(x)=2 x+1 \\
f(x, y)=x^{2}+y^{2}
\end{gathered}
$$

And We Learn How to Compute With Them

$$
\begin{gathered}
f(x)=2 x+1 \\
f(3+2) \mapsto \\
f(5) \mapsto
\end{gathered}
$$

$$
(2 \times 5)+1 \mapsto
$$

$$
10+1 \mapsto
$$

The Substitution Rule of Computation

- To reduce an application of a function to a set of arguments:
- Reduce the arguments, left to right
- Reduce the body of the function, with each parameter replaced by the corresponding argument

Using the Substitution Rule

$$
\begin{gathered}
f(x, y)=x^{2}+y^{2} \\
f(4-5,3+1) \mapsto \\
f(-1,3+1) \mapsto \\
f(-1,4) \mapsto \\
-1^{2}+4^{2} \mapsto \\
1+16 \mapsto
\end{gathered}
$$

What About Types?

- Eventually, we learn that our functions need to include rules indicating the required types of their arguments, and the types of applications
- You might have seen notation like this in a math class:

$$
f: Z \rightarrow Z
$$

Typing Rules for Functions

$$
f: Z \rightarrow Z
$$

What does this rule mean?

Typing Rules for Functions

$$
f: Z \longrightarrow Z
$$

- We can interpret the arrow as denoting data flow:

The function f consumes arguments with value type \boldsymbol{Z} and produces values with value type \boldsymbol{Z}
(or one of a well-defined set of exceptional events occurs).

Typing Rules for Functions

$$
f: Z \rightarrow Z
$$

- We can also interpret the arrow as logical implication:

Iff is applied to an argument expression with static type \boldsymbol{Z} then the application expression has static type \boldsymbol{Z}.

What are The Exceptional Events in Algebra?

- A"division by zero" error
- We run out of some finite resource
- What else?

The Substitution Rule Allows for Computations that Never Finish

$$
\begin{gathered}
f: \mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{Z} \\
f(\mathrm{x}, \mathrm{y})=\mathrm{f}(\mathrm{x}, \mathrm{y}) \\
\mathrm{f}(4-5,3+1) \mapsto \\
\mathrm{f}(-1,3+1) \mapsto \\
\mathrm{f}(-1,4) \mapsto \\
\mathrm{f}(-1,4) \mapsto
\end{gathered}
$$

The Substitution Rule Allows for Computations that Keep Getting Larger

$$
\begin{gathered}
f: \mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{Z} \\
\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{f}(\mathrm{f}(\mathrm{x}, \mathrm{y}), \mathrm{f}(\mathrm{x}, \mathrm{y})) \\
\mathrm{f}(4-5,3+1) \mapsto \\
\mathrm{f}(-1,3+1) \mapsto \\
\mathrm{f}(-1,4) \mapsto \\
\mathrm{f}(\mathrm{f}(-1,4), \mathrm{f}(-1,4)) \mapsto \\
\mathrm{f}(\mathrm{f}(\mathrm{f}(-1,4), \mathrm{f}(-1,4)), \mathrm{f}(\mathrm{f}(-1,4), \mathrm{f}(-1,4))) \mapsto
\end{gathered}
$$

But We Need at Least Limited Recursion to

 Define Common Algebraic Constructs$$
n!=\left\{\begin{array} { l l }
{ 1 } & { \text { if } n = 0 } \\
{ n (n - 1) ! } & { \text { if } n > 0 }
\end{array} ~ \left(\begin{array}{ll}
1 & \mathbf{N} \\
n
\end{array}\right.\right.
$$

What are The Exceptional Events in Algebra?

- A"division by zero" error
- We run out of some finite resource
- The computation never stops (unbounded time)
- The computation keeps getting larger (unbounded space)

A new exposure to pure computation: Core Scala

Core Scala

- We will continue to use algebra as our model of computation
- We will switch to Scala syntax
- We will introduce new value types

Value Types in Core Scala

Int: -3, -2, -1, 0, 1, 2, 3

Double: 1.414, 2.718, 3.14, ∞

Boolean: false, true

String: "Hello, world!"

Primitive Operators on Ints and Doubles in Core Scala

Algebraic operators:

$$
e+e^{\prime} \quad e-e^{\prime} \quad e^{*} e^{\prime} \quad e / e^{\prime}
$$

- For each operator:
- If both arguments to an application of an operator are of type Int then the application is of type Int
- If both arguments to an application of an operator are of type Double then the application is of type Double

Primitive Operators on Ints and Doubles in Core Scala

Comparison operators:

$$
\begin{array}{cl}
\mathrm{e}==\mathrm{e}^{\prime} & \mathrm{e}<=\mathrm{e}^{\prime} \\
\mathrm{e}>=\mathrm{e}^{\prime} \quad \mathrm{e}!=\mathrm{e}^{\prime} \\
\mathrm{e}>\mathrm{e}^{\prime} & \mathrm{e}<\mathrm{e}^{\prime}
\end{array}
$$

- For each operator:
- If both arguments to an application of an operator are of type Int then the application is of type Boolean
- If both arguments to an application of an operator are of type Double then the application is of type Boolean

Some Primitive Operators on Booleans in Core Scala

Conjunction, Disjunction:

$$
e \& e^{\prime} \quad e \mid e^{\prime}
$$

- In both cases:
- If both arguments to an application are of type Boolean then the application is of type Boolean

More Primitive Operators on Booleans in Core Scala

Negation:
!e

- If the argument to an application is of type Boolean then the application is of type Boolean

Yet More Primitive Operators on Booleans in Core Scala

Conditional Expressions:
if (e) é else e"

- If the first argument is of type Boolean and the second and third argument are of the same type T then the application is of type T

Primitive Operators on Strings in Core Scala

String Concatenation:

$$
e+e^{\prime}
$$

- If both arguments are of type String then the application is of type String

An Example Function Definition in Core Scala

def square(x: Double) $=x * x$

Syntax for Defining Functions

def fnName(arg ${ }_{0}$: type ${ }_{0}, \ldots, \arg _{\mathrm{k}}:$ type $\left._{\mathrm{k}}\right):$ returnType $=$ expr

- If there is no recursion, we may elide the return type:
def fnName(arg ${ }_{0}$: type ${ }_{0}, \ldots, \arg _{k}:$ type $\left._{k}\right)=$ expr

The Substitution Rule Works as Before

def square(x: Double) $=x * x$

$$
\begin{gathered}
\text { square }(2.0 * 3.0) \mapsto \\
\text { square }(6.0) \mapsto \\
6.0 * 6.0 \mapsto \\
36.0
\end{gathered}
$$

