Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

September 5, 2019

Announcements

Homework 0 is “"due” next Thursday
(ensure you can submit your homework without issue!)

Homework 1 will also be assigned next Thursday

Programming With Intention

. There is far too much broken software in the world...

. The number of mission critical domains affected by
programming Is Increasing

. Space exploration and satellites, defense, medical
devices, automobiles, finance

The Design Recipe

The Design Recipe

Analysis: What are the objects in the problem domain? What data
types we will use to represent them?

Contract: What are the names of our functions and their
parameters? What are the requirements of the data they consume
and produce? What is the meaning of what our program computes?

Repeat until we are confident in our program’s correctness
1. Write some tests (start with example inputs/outputs)
2. Sketch a function template

3. Define the function

Example: Calculating Profit for a
Movie Theater

(Problem Statement from "How to Design Programs” 2001)

. The owner of a movie theater collected the following data:
. At $5.00 per ticket, 120 people attend a performance

Decreasing by $0.10 increases attendance by 15 people
. A performance costs $180 plus $0.04 per attendee

Define a function to calculate the exact relationship
between ticket price and profit

Analysis
We are working with monetary values and counts of
attendees
Attendees are whole numbers

To avoid rounding errors, we will use Ints for
monetary values

Therefore all monetary values will be represented in
cents

Analysis

We need to compute profit
Profit is calculated as revenue - cost

Cost is dependent on attendance

Contracts

First, define a contract for our function:
What is the name of the function?
What considerations should go into the names we choose?

What are the static types of the arguments that our function
consumes?

What other constraints must hold on the values it consumes?
What is the static type of its result?

What else does it ensure about its result?

Contract for Attendance

def attendance(ticketPrice: Int): Int = {
require(ticketPrice >= 0)
7?7 : Int

} ensuring(result => result >= 0)

10

Scala’s ??? Placeholder

+ 777 Is a build-in placeholder value in Scala

. Can restrict the placeholder’s type like a variable:
2?77 Int
. Used to enable compilation of partially implemented code

. Evaluating the placeholder results in a run-time error

11

Statement of Purpose

Use a comment to provide a brief statement of the
meaning of the function

. Well chosen names for functions and parameters are

often some of the best documentation!

12

Statement of Purpose for
Attendance

/>I<>I<

* Given a ticketPrice 1n cents,
* returns the number of people expected
* to attend a performance.
*/
def attendance(ticketPrice: Int): Int = {
require(ticketPrice >= 0)

} ensuring(result => result >= 0)

13

Write Some Test Examples

120 == attendance(500)

. We can think of tests as constraint equations in algebra
. The program we are constructing is a solution to these constraints

14

Sketch a Function Template

/>I<>I<

* Given a ticketPrice 1n cents,
* returns the number of people expected
* to attend a performance.
*/
def attendance(ticketPrice: Int): Int = {
require(ticketPrice >= 0)
an algebraic expression
} ensuring(result => result >= 0)

15

Defining Functions

Design Principle: “Keep It Simple, Stupid”

. Given the tests we’ve written so far and the template
we’ve sketched, write the simplest solution that passes

those tests
Keeping the definition simple will:
Force us to include adequate test coverage

Help to keep us from over-engineering

16

Define The Function

/>I<>I<

* Given a ticketPrice 1n cents,
* returns the number of people expected
* to attend a performance.
*/
def attendance(ticketPrice: Int): Int = {
require(ticketPrice >= 0)
120
} ensuring(result => result >= 0)

17

We Need More Tests

120 == attendance(500)
135 == attendance(490)

Redefinition (Attempt 1)

/>I<>I<

* Given a ticketPrice 1n cents,
* returns the number of people expected
* to attend a performance
*/
def attendance(ticketPrice: Int): Int = {
require(ticketPrice >= 0)
120 + (500 - ticketPrice) * (15 / 10)
} ensuring(result => result >= 0)

19

But Now Some Tests Falil

120 == attendance(500)
135 == attendance(490)

20

Division With Ints

attendance(490) »
120 + (500 - 490) * (15 / 10) »
120 + 10 * (15 / 10) »
120 + 10 * (15 / 10) »
120 + 10 * 1 »
120 + 10 »

130

21

Redefinition (Attempt 2)

/>I<>I<

* Given a ticketPrice 1n cents,
* returns the number of people expected
* to attend a performance
*/
def attendance(ticketPrice: Int): Int = {
require(ticketPrice >= 0)
120 + ((500 - ticketPrice) * 3) / 2
} ensuring(result => result >= 0)

22

Now Our Two Tests Succeed

120 == attendance(500)
135 == attendance(490)

23

Let’s Add Harder Tests

120 == attendance(500)
135 == attendance(490)
O == attendance(1000)

Now our ensuring clause fails!

24

Redefinition (Attempt 3)

/>I<>I<

* Given a ticketPrice 1n cents,
* returns the number of people expected
* to attend a performance
*/
def attendance(ticketPrice: Int): Int = {
require (ticketPrice >= 0)
max(0, 120 + ((500 - ticketPrice) * 3) / 2)
} ensuring(result => result >= 0)

25

(To Do: Apply Our Design
Recipe to max)

def max(m: Int, n: Int) = 1f (m >= n) m else n

26

Now All Tests Pass

120 == attendance(500)
135 == attendance(490)
O == attendance(1000)

27

Let’s Add More Tests

120 == attendance(500)
135 == attendance(490)
O == attendance(1000)
O == attendance(Int.MaxValue)

28

Overflow Does Not Appear To
Be a Problem...

120 == attendance(500)
135 == attendance(490)
O == attendance(1000)
O == attendance(Int.MaxValue)

29

Or Does It...

attendance(2147483647) »
max(0, 120 + ((500 - 2147483647) * 3) / 2) »
max (0, 120 + (-2147483147 * 3) / 2) »
max(0, 120 + -2147482145 / 2) »
max(0, 120 + -1073741072) »
max(0, -1073740952) »
if (0 >= -1073740952) 0 else -1073740952 »

0

30

Bounding Cost of Attendance

. We can determine an exact bound for the maximum

allowable parameter to attendance:

. For each subexpression, solve for the parameter
values that would result in overflow:

(500 - ticketPrice) > Int.MaxValue
(500 - ticketPrice) < Int.MinValue

etc.

31

Bounding Values Based on
Domain Knowledge

. We can also find appropriate bounds by considering the range
of values required by our problem domain

. Often, these bounds will be much tighter

In our example, we can see from our formula that attendance is
zero whenever the cost of a ticket is $5.80 or above

. We can also see that even free tickets achieve attendance of

only 870 people

. And it is likely that our theater cannot seat 870 people!

32

Bounding Cost of Attendance

def attendance(ticketPrice: Int): Int = {
require(0 <= ticketPrice & ticketPrice <= 1000)
max(0, 120 + ((500 - ticketPrice) * 3) / 2)

} ensuring(result => result >= 0)

33

Now We Should Remove Our
Test on Int.MaxValue

120 == attendance(500)
135 == attendance(490)
O == attendance(1000)

34

Add Let’s Add Some More
Tests While We're At It

120 == attendance(500)
135 == attendance(490)
== attendance(1000)
== attendance(580)
== attendance(579)

870 == attendance(0)

35

Now We Can Apply the Design Recipe
to Our Remaining Functions

/>|<>|<
* Returns cost to the theater of showing a film,
* as a function of ticketPrice.
*/

def cost(ticketPrice: Int) = {

require(0 <= ticketPrice & ticketPrice <= 1000)
18000 + 4 * attendance(ticketPrice)
} ensuring(result => result > 0)

36

Now We Can Apply the Design
Recipe to Our Remaining Functions

/>|<>I<

* Returns revenue received by the theater when
* showing a film, as a function of ticket price.
*/
def revenue(ticketPrice: Int) = {
require(0 <= ticketPrice & ticketPrice <= 1000)
ticketPrice * attendance(ticketPrice)
} ensuring(result => result >= 0)

37

What Should Be The Ensuring
Clause on Profit?

/>|<>|<

* Returns profit enjoyed by the theater after showing
* a film, defined as the difference between revenue
* costs.
*/
def profit(ticketPrice: Int) = {
require(0 <= ticketPrice & ticketPrice <= 1000)
revenue(ticketPrice) - cost(ticketPrice)

}

38

Following The Design Recipe includes writing
tests on all of our newly defined functions

35130 == profit(510)
-21480 == profit(0)
-18000 == profit(1000)

O == revenue(0)
O == revenue(1000)
53550 == revenue(510)

18420 == cost(510)

21480 == cost(0)
18000 == cost(1000)

39

Can’t Forget About Max!

Int.MaxValue == max(0, Int.MaxValue)
O == max(-1, 0O)
1 == max(-1, 1)

== max(0, Int.MinValue)

== max(Int.MinValue, 0)

OO

40

How Many Helper Functions
Should We Include?

As a guideline:

. Include a helper function for each of the
dependencies mentioned in your problem statement

. Include a helper function for new dependencies
discovered during testing

41

Inlining Into One Large Function
Makes Code Far Less Readable

def profit(ticketPrice: Int) = {
require(0 <= ticketPrice & ticketPrice <= 1000)

ticketPrice * max(0, 120 + ((500 - ticketPrice) * 3) / 2
18000 + 4 * max(0, 120 + ((500 - ticketPrice) * 3) / 2)

42

) -

