
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

September 5, 2019

Announcements

• Homework 0 is “due” next Thursday
(ensure you can submit your homework without issue!)

• Homework 1 will also be assigned next Thursday

2

Programming With Intention

• There is far too much broken software in the world…

• The number of mission critical domains affected by
programming is increasing

• Space exploration and satellites, defense, medical
devices, automobiles, finance

3

The Design Recipe

4

The Design Recipe
• Analysis: What are the objects in the problem domain? What data

types we will use to represent them?

• Contract: What are the names of our functions and their
parameters? What are the requirements of the data they consume
and produce? What is the meaning of what our program computes?

• Repeat until we are confident in our program’s correctness

1. Write some tests (start with example inputs/outputs)

2. Sketch a function template

3. Define the function

5

Example: Calculating Profit for a
Movie Theater

(Problem Statement from “How to Design Programs” 2001)

• The owner of a movie theater collected the following data:

• At $5.00 per ticket, 120 people attend a performance

• Decreasing by $0.10 increases attendance by 15 people

• A performance costs $180 plus $0.04 per attendee

• Define a function to calculate the exact relationship
between ticket price and profit

6

Analysis

• We are working with monetary values and counts of
attendees

• Attendees are whole numbers

• To avoid rounding errors, we will use Ints for
monetary values

• Therefore all monetary values will be represented in
cents

7

Analysis

• We need to compute profit

• Profit is calculated as revenue - cost

• Cost is dependent on attendance

8

Contracts
• First, define a contract for our function:

• What is the name of the function?

• What considerations should go into the names we choose?

• What are the static types of the arguments that our function
consumes?

• What other constraints must hold on the values it consumes?

• What is the static type of its result?

• What else does it ensure about its result?

9

Contract for Attendance

def attendance(ticketPrice: Int): Int = {
require(ticketPrice >= 0)
??? : Int

} ensuring(result => result >= 0)

10

Scala’s ??? Placeholder

11

• ??? Is a build-in placeholder value in Scala

• Can restrict the placeholder’s type like a variable:

??? : Int

• Used to enable compilation of partially implemented code

• Evaluating the placeholder results in a run-time error

Statement of Purpose

• Use a comment to provide a brief statement of the
meaning of the function

• Well chosen names for functions and parameters are
often some of the best documentation!

12

Statement of Purpose for
Attendance

/**
* Given a ticketPrice in cents,
* returns the number of people expected
* to attend a performance.
*/
def attendance(ticketPrice: Int): Int = {
require(ticketPrice >= 0)
...

} ensuring(result => result >= 0)

13

Write Some Test Examples

120 == attendance(500)

• We can think of tests as constraint equations in algebra
• The program we are constructing is a solution to these constraints

14

Sketch a Function Template

/**
* Given a ticketPrice in cents,
* returns the number of people expected
* to attend a performance.
*/
def attendance(ticketPrice: Int): Int = {
require(ticketPrice >= 0)
an algebraic expression

} ensuring(result => result >= 0)

15

Defining Functions
• Design Principle: “Keep It Simple, Stupid”

• Given the tests we’ve written so far and the template
we’ve sketched, write the simplest solution that passes
those tests

• Keeping the definition simple will:

• Force us to include adequate test coverage

• Help to keep us from over-engineering

16

Define The Function

/**
* Given a ticketPrice in cents,
* returns the number of people expected
* to attend a performance.
*/
def attendance(ticketPrice: Int): Int = {

require(ticketPrice >= 0)
120

} ensuring(result => result >= 0)

17

We Need More Tests

120 == attendance(500)
135 == attendance(490)

18

Redefinition (Attempt 1)

/**
* Given a ticketPrice in cents,
* returns the number of people expected
* to attend a performance
*/
def attendance(ticketPrice: Int): Int = {
require(ticketPrice >= 0)
120 + (500 - ticketPrice) * (15 / 10)

} ensuring(result => result >= 0)

19

But Now Some Tests Fail

120 == attendance(500)
135 == attendance(490)

20

Division With Ints
attendance(490) ↦

120 + (500 - 490) * (15 / 10) ↦

120 + 10 * (15 / 10) ↦

120 + 10 * (15 / 10) ↦

120 + 10 * 1 ↦

120 + 10 ↦

130

21

Redefinition (Attempt 2)

/**
* Given a ticketPrice in cents,
* returns the number of people expected
* to attend a performance
*/
def attendance(ticketPrice: Int): Int = {
require(ticketPrice >= 0)
120 + ((500 - ticketPrice) * 3) / 2

} ensuring(result => result >= 0)

22

Now Our Two Tests Succeed

120 == attendance(500)
135 == attendance(490)

23

Let’s Add Harder Tests

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)

Now our ensuring clause fails!

24

Redefinition (Attempt 3)

/**
* Given a ticketPrice in cents,
* returns the number of people expected
* to attend a performance
*/

def attendance(ticketPrice: Int): Int = {
require (ticketPrice >= 0)
max(0, 120 + ((500 - ticketPrice) * 3) / 2)

} ensuring(result => result >= 0)

25

(To Do: Apply Our Design
Recipe to max)

def max(m: Int, n: Int) = if (m >= n) m else n

26

Now All Tests Pass

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)

27

Let’s Add More Tests

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)
0 == attendance(Int.MaxValue)

28

Overflow Does Not Appear To
Be a Problem…

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)
0 == attendance(Int.MaxValue)

29

Or Does It…
attendance(2147483647) ↦

max(0, 120 + ((500 - 2147483647) * 3) / 2) ↦

max(0, 120 + (-2147483147 * 3) / 2) ↦

max(0, 120 + -2147482145 / 2) ↦

max(0, 120 + -1073741072) ↦

max(0, -1073740952) ↦

if (0 >= -1073740952) 0 else -1073740952 ↦

0

30

Bounding Cost of Attendance

• We can determine an exact bound for the maximum
allowable parameter to attendance:

• For each subexpression, solve for the parameter
values that would result in overflow:

(500 - ticketPrice) > Int.MaxValue

(500 - ticketPrice) < Int.MinValue

etc.

31

Bounding Values Based on
Domain Knowledge

• We can also find appropriate bounds by considering the range
of values required by our problem domain

• Often, these bounds will be much tighter

• In our example, we can see from our formula that attendance is
zero whenever the cost of a ticket is $5.80 or above

• We can also see that even free tickets achieve attendance of
only 870 people

• And it is likely that our theater cannot seat 870 people!

32

Bounding Cost of Attendance

def attendance(ticketPrice: Int): Int = {
require(0 <= ticketPrice & ticketPrice <= 1000)
max(0, 120 + ((500 - ticketPrice) * 3) / 2)

} ensuring(result => result >= 0)

33

Now We Should Remove Our
Test on Int.MaxValue

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)
0 == attendance(Int.MaxValue)

34

Add Let’s Add Some More
Tests While We’re At It

120 == attendance(500)
135 == attendance(490)
0 == attendance(1000)
0 == attendance(580)
2 == attendance(579)
870 == attendance(0)

35

Now We Can Apply the Design Recipe
to Our Remaining Functions

/**
* Returns cost to the theater of showing a film,
* as a function of ticketPrice.
*/

def cost(ticketPrice: Int) = {
require(0 <= ticketPrice & ticketPrice <= 1000)
18000 + 4 * attendance(ticketPrice)

} ensuring(result => result > 0)

36

/**
* Returns revenue received by the theater when
* showing a film, as a function of ticket price.
*/
def revenue(ticketPrice: Int) = {

require(0 <= ticketPrice & ticketPrice <= 1000)
ticketPrice * attendance(ticketPrice)

} ensuring(result => result >= 0)

Now We Can Apply the Design
Recipe to Our Remaining Functions

37

What Should Be The Ensuring
Clause on Profit?

/**
* Returns profit enjoyed by the theater after showing
* a film, defined as the difference between revenue
* costs.
*/
def profit(ticketPrice: Int) = {

require(0 <= ticketPrice & ticketPrice <= 1000)
revenue(ticketPrice) - cost(ticketPrice)

}

38

Following The Design Recipe includes writing
tests on all of our newly defined functions

35130 == profit(510)
-21480 == profit(0)

-18000 == profit(1000)
…

0 == revenue(0)
0 == revenue(1000)

53550 == revenue(510)
…

18420 == cost(510)
21480 == cost(0)

18000 == cost(1000)
…

39

Can’t Forget About Max!

Int.MaxValue == max(0, Int.MaxValue)
0 == max(-1, 0)
1 == max(-1, 1)

0 == max(0, Int.MinValue)
0 == max(Int.MinValue, 0)

...

40

How Many Helper Functions
Should We Include?

As a guideline:

• Include a helper function for each of the
dependencies mentioned in your problem statement

• Include a helper function for new dependencies
discovered during testing

41

Inlining Into One Large Function
Makes Code Far Less Readable

def profit(ticketPrice: Int) = {
require(0 <= ticketPrice & ticketPrice <= 1000)

ticketPrice * max(0, 120 + ((500 - ticketPrice) * 3) / 2) -
18000 + 4 * max(0, 120 + ((500 - ticketPrice) * 3) / 2)

}

42

