Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

September 17,2019

Homework 1

Please submit your homework via the SVN / turnin
system, in a folder named hw 1

. The specific files to submit are defined in the
description for each assignments

For each section, please turn in only your final program
resulting from completion of the section

Please Restrict Your Homework Submission
to Features Covered in Class

Current Core Scala Features

. (case) object

. (case) class

- val

- 1f /else

- match/case
require, ensuring

- Int,Double, String

- Array[T], Tuples

. Arithmetic operators

(In)equality operators

Logical and / or

- assert

. A-expressions (€nsuring)

Plus the stuff from today!

Please Restrict Your Homework Submission
to Features Covered in Class

This should be the only import statements you need:

import org.scalatest.

(or equivalent imports auto-generated by your IDE for
your ScalaTest test class)

Methods and Operators

Syntactic Sugar For Binary
Methods

. We refer to methods that take one parameter (in
addition to the receiver) as binary methods

case class Coordinate(x: Int, y: Int) {
def magnitude() = X*X + y*y

def add(that: Coordinate) =
Coordinate(x + that.x, y + that.y)

Syntactic Sugar For Binary
Methods

Coordinate(1l,2).add(Coordinate(3,4))

| o 4

Coordinate(4,06)

Syntactic Sugar For Binary
Methods

. We can elide the dot in method calls on binary methods

. We can also elide the enclosing parentheses around the

sole argument

Syntactic Sugar For Binary
Methods

Coordinate(1l,2) add Coordinate(3,4)

-

Coordinate(4,06)

10

Operator Symbols

. Scala allows the use of operator symbols in method names

. In fact, operators are simply methods in Scala

1 + 2 » 3

1.+4(2) » 3

11

Coordinate Custom +

case class Coordinate(x: Int, y: Int) {
def magnitude() = X*X + y*y

def +(that: Coordinate) =
Coordinate(x + that.x, y + that.y)

12

Coordinate Custom +

Coordinate(1,2) + Coordinate(3,4)

-

Coordinate(4,6)

13

Requires Clauses on Class
Constructors

case class Name(fieldl: Typel, .., fieldN: TypeN) {
require (boolean-expression)

}

« Checked on every constructor call

« Because case class instances are immutable, this ensures the
property holds for the lifetime of an instance

14

Equals on Case Classes

. The equals method on a case class instance checks for

structural equality with its argument:
Rational(4,6).equals(Rational(4,6)) »

true

15

Equals on Case Classes

Note that equals is a binary method, and so we can also
write this expression as:

Rational(4,6) equals Rational(4,6) »

true

16

Equals on Case Classes

. The == operator in Scala, unlike Java, delegates to the

equals method:
Rational(4,6) == Rational(4,6) =~

true

17

Equals on Case Classes

. Of course, the built in equals method does not check for

mathematical equality:
Rational(4,6) == Rational(2,3) »

false

18

Equals on Case Classes

. Why is this definition of equality acceptable on case

classes?

. What other definition is available to us?

Rational(4,6) == Rational(2,3) =»

false

19

Calling and Defining Parameterless
Methods Without Parentheses

def toString() = { .. }
VS.

def toString = { .. }

20

Calling and Defining Parameterless
Methods Without Parentheses

Rational(4,6).toString()
VS.

Rational(4,6).toString

21

The Uniform Access Principle

. Client code should not be affected by whether an
attribute is defined as a field or a method

. Only applies to pure (side-effect free) methods

. Can be strange even for some pure methods (what
are some examples?)

22

Abstract Datatypes

Abstract Datatypes

. Often, we wish to abstract over a collection of

compound datatypes that share common properties
For example, we might wish to define an abstract

datatype for shapes, with separate case classes for each
of several shapes

For this purpose, we define an abstract class and use
subclassing

24

Abstract Datatypes

abstract class Shape

case class Circle(radius: Double) extends Shape

case class Square(side: Double) extends Shape

case class Rectangle(height: Double, width: Double) extends Shape

25

Abstract Methods

abstract class Shape {
def area: Double

}

case class Circle(radius: Double) extends Shape {
val p1 = 3.14
def area = pi1 * radius * radius

}

case class Square(side: Double) extends Shape {
def area = side * side

}

case class Rectangle(length: Double, width: Double)
extends Shape {
def area = length * width

} 2

One Method
to Rule Them All

abstract class Shape {
val p1 = 3.14
def area: Double = this match {
case Circle(radius) => pi * radius * radius
case Square(side) => side * side
case Rectangle(width, height) => width * height
}
}

27

Applying a Class Method
Revisited

. To reduce the application of a method:

C(vl, .., vk).m(argl, .., argN)

. Reduce the receiver and arguments, left to right

. Redueethe-bedy-efm, replacing constructor

parameters with constructor arguments and method
parameters with method arguments

28

Applying a Class Method
Revisited

. To reduce the application of a method:
C(vl, .., vk).m(argl, .., argN)
. Reduce the receiver and arguments, left to right

. Find the body of m in C and reduce to that,
replacing constructor parameters with constructor
arguments and method parameters with method

arguments

29

The Body of m

. To find the body of method m in type C:
. Find the definition of m in the body of C, if it exists

. Otherwise, find the body of m in the immediate
superclass of C

30

Abstract Datatype
Example: Option

The Option Class

. The Option class is a collection of zero or one items.

. The parameterized type Option[T] denotes a collection

of at most one object with type T.
. The Some[T] subclass represents the non-empty case.

. The None object represents the empty case.

32

Option Implementation

abstract class Option[T] {
def get: T

def 1sEmpty: Boolean

def nonEmpty: Boolean

}

case class Some[T](x: T) extends Option[T] {
def get = x

def 1sEmpty = false

def nonEmpty = true

}

case object None extends Option[Nothing] {
def get: T =
throw new java.util.NoSuchElementException()
def 1sEmpty = true
def nonEmpty = false
} 33

Design Templates for
Abstract Datatypes

Case 1
We Expect Few New Functions
But Many New Variants

Abstract Methods

abstract class Shape {
def area: Double

}

case class Circle(radius: Double) extends Shape {
val p1 = 3.14
def area = pi1 * radius * radius

}

case class Square(side: Double) extends Shape {
def area = side * side

}

case class Rectangle(length: Double, width: Double)
extends Shape {
def area = length * width

} 36

Case Two
We Expect Many New Functions
But Few New Variants

One (Pattern Matching)
Method to Rule Them All

abstract class Shape {
val p1 = 3.14
def area: Double = this match {
case Circle(radius) => pi * radius * radius
case Square(side) => side * side
case Rectangle(width, height) => width * height
}
}

38

Case 2: We Expect Many New
Functions But Few New Variants

. This is a case that traditional functional programming
handles well

. Classic example domains: Compilers, theorem provers,
numeric algorithms, machine learning

. Declare a top-level function with cases for each data
variant

a.k.a., The Visitor Pattern

39

We Can Define Arbitrary Functions
Without Modifying Data Definitions

def makeLikeFirst(shapeO: Shape, shapel: Shape) = {
(shapeO, shapel) match {
case (Circle(r), Square(s)) => Circle(s)
case (Circle(r), Rectangle(l,w)) => Circle((l+w)/2)

case (Square(s), Circle(r)) => Square(r)
case (Square(s), Rectangle(l,w)) => Square((l+w)/2)

case (Rectangle(l,w), Circle(r)) => Rectangle(r,r)
case (Rectangle(l,w), Square(s)) => Rectangle(s,s)

case => shapel

40

But A New Data Variant Requires Us To
Modify All Functions Over the Datatype

val p1 = 3.14

def area(shape: Shape) = {
shape match {
case Circle(r) =>pl * r * r
case Square(x) => x * X
case Rectangle(x,y) => x * vy
case Triangle(b,h) => b*h/2

41

But A New Data Variant Requires Us To
Modify All Functions Over the Datatype

def makelLikeFirst(shape®: Shape, shapel: Shape) = {
(shape®, shapel) match {
case (Circle(r), Square(s)) => Circle(s)
case (Circle(r), Rectangle(l,w)) => Circle((l+w)/2)
case (Circle(r), Triangle(b,h)) => Circle(b)

case (Square(s), Circle(r)) => Square(r)
case (Square(s), Rectangle(l,w)) => Square((l+w)/2)
case (Square(s), Triangle(b,h)) => Square(b+h/2)

case (Rectangle(l,w), Circle(r)) => Rectangle(r,r)
case (Rectangle(l,w), Square(s)) => Rectangle(s,s)
case (Rectangle(l,w), Triangle(b,h)) => Rectangle(b,h)

// plus all the cases for Triangle on the left (omitted)
case => shapel

42

Sealed Data Types

* Adding the sealed keyword to an abstract type

indicates that all subclasses of that type are declared
in the current compilation unit.

* Provides extra information to the compiler for
optimizations and diagnostics

sealed abstract class Shape
case class Square(length: Double) extends Shape
case class Circle(radius: Double) extends Shape

case class Triangle(base: Double, height: Double)
extends Shape

43

Sealed Data Types

object Math {
val pl1 = 3.141592653589793

}

sealed abstract class Shape {
def area: Double = this match {
// case Square(x) => x * X
case Circle(r) => Math.pi * r * r
case Triangle(b, h) == 0.5 * b * h
}
}

warning: match may not be exhaustive.
It would fail on the following input: Square()
def area: Double = this match {

44

