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Scala Style Guide

Scala has an official style guide that you should reference 
while working on your homework projects:

https://docs.scala-lang.org/style/
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https://docs.scala-lang.org/style/


Design Abstraction
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def containsZero(xs: List): Boolean = xs match {
case Empty => false
case Cons(n, ys) => (n == 0) || containsZero(ys)

}

def containsOne(xs: List): Boolean = xs match {
case Empty => false
case Cons(n, ys) => (n == 1) || containsOne(ys)

}

Our Function Templates 
Reveal Common Structure
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def contains(m: Int, xs: List): Boolean = xs match {
case Empty => false
case Cons(n, ys) => (n == m) || contains(m, ys)

}

Our Function Templates 
Reveal Common Structure
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But Sometimes the Part We 
Want to Abstract Is a Function

def below(m: Int, xs: List): List =
xs match {
case Empty => Empty
case Cons(n, ys) => {
if (n < m) Cons(n, below(m, ys))
else below(m, ys)

}
}
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But Sometimes the Part We 
Want to Abstract Is a Function

def above(m: Int, xs: List): List =
xs match {
case Empty => Empty
case Cons(n, ys) => {
if (n > m) Cons(n, above(m, ys))
else above(m, ys)

}
}
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Taking Functions As 
Parameters

def filter(f: (Int)=>Boolean, xs: List): List =
xs match {
case Empty => Empty
case Cons(n, ys) => {
if (f(n)) Cons(n, filter(f, ys))
else filter(f, ys)

}
}
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Passing Functions as 
Arguments

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

filter(((n: Int) => (n > 0)), xs) ↦*
Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

filter(((n: Int) => (n < 0)), xs) ↦*
Empty

filter(((n: Int) => (n < 3)), xs) ↦*
Cons(1,Cons(2,Empty))
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Passing Functions as 
Arguments

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

filter(((n: Int) => (n > 0)), xs) ↦*
Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

filter(((n: Int) => (n < 0)), xs) ↦*
Empty

filter(((n: Int) => (n < 3)), xs) ↦*
Cons(1,Cons(2,Empty))

These are
function literals
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First-Class Functions

• Function literals are expressions with static arrow types 
that reduce to function values

• The value type of a function value is also an arrow type

• Function values are first-class values:

• They are allowed to be passed as arguments

• They are allowed to be returned as results

11



Simplifying Function Literals

Parameter types on function literals are allowed to be 
elided whenever the types are clear from context:

filter(((n: Int) => (n > 0)), xs)

can be written as

filter(((n) => (n > 0)), xs)
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Simplifying Function Literals

• Parentheses around a single parameter is allowed to be 
omitted 

filter(((n) => (n > 0)), xs)

can be written as

filter(n => (n > 0), xs)
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Simplifying Function Literals

• When a single parameter is used only once in the body of a function 
literal:

• We can drop the parameter list 

• We simply write the body with an _ at the place where the 
parameter is used

For example,

((x: Int) => (x < 0))

becomes

_ < 0
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Passing Function Literals As 
Arguments

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

filter(_ < 3, xs) ↦* Cons(1,Cons(2,Empty))
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Guidelines On Using Function 
Literals

• Function literals are well-suited to situations in which:

• The function is only used once

• The function is not recursive

• The function does not constitute a key concept in the 
problem domain
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Comprehensions

2𝑥 | 𝑥 ∈ 𝑥𝑠
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Mapping a Computation Over 
a List

def double(xs: List) = xs match {
case Empty => Empty
case Cons(y,ys) => Cons(y+y, double(ys))

}

18



def negate(xs: List) = xs match {
case Empty => Empty
case Cons(y,ys) => Cons(-y, negate(ys))

}

Mapping a Computation Over 
a List
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Negation as a Comprehension

−𝑥 | 𝑥 ∈ 𝑥𝑠
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Generalizing a Mapping 
Computation

def map(f: Int=>Int, xs: List): List =
xs match {
case Empty => Empty
case Cons(y,ys) => Cons(f(y), map(f,ys))

}
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Mapping a Computation Over 
a List

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

negate(xs) ↦*
Cons(-1,Cons(-2,Cons(-3,Cons(-4,Cons(-5,Cons(-6,Empty))))))

double(xs) ↦*
Cons(1,Cons(4,Cons(9,Cons(16,Cons(25,Cons(36,Empty))))))
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Mapping a Computation Over 
a List

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

map(-_, xs) ↦*
Cons(-1,Cons(-2,Cons(-3,Cons(-4,Cons(-5,Cons(-6,Empty))))))

map(x => x+x, xs) ↦*
Cons(1,Cons(4,Cons(6,Cons(8,Cons(10,Cons(12,Empty))))))
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Recall Our Sum Function Over 
Lists

def sum(xs: List): Int = xs match {
case Empty => 0
case Cons(y,ys) => y + sum(ys)

}
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In Mathematics, We Might 
Write this as a Summation

෍

𝑥∈𝑥𝑠

𝑥
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And Our Product Function 
Over Lists

def product(xs: List): Int = xs match {
case Empty => 1
case Cons(y,ys) => y * product(ys)

}
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In Mathematics, We Might 
Write this as a Product

ෑ

𝑥∈𝑥𝑠

𝑥
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We Abstract to a Reduction 
Function Over Lists

def reduce(base: Int, f: (Int, Int) => Int, xs: List): Int =
xs match {
case Empty => base
case Cons(y,ys) => f(y, reduce(base, f, ys))

}
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Example Reductions

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

reduce(0, (x,y) => x + y, xs) ↦* 21

reduce(1, (x,y) => x * y, xs) ↦* 720
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Min and Max

def max(xs: List): Int =
reduce(Int.MinValue, (x,y) => if (x > y) x else y, xs)

def min(xs: List): Int =
reduce(Int.MaxValue, (x,y) => if (x < y) x else y, xs)
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Min and Max

def max(xs: List): Int =
reduce(Int.MinValue, (x,y) => x max y, xs)

def min(xs: List): Int =
reduce(Int.MaxValue, (x,y) => x min y, xs)
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Numbers in Scala have min/max binary operators:



Min and Max, Simplified

def max(xs: List) = reduce(Int.MinValue, _ max _, xs)

def min(xs: List) = reduce(Int.MaxValue, _ min _, xs)

32



Simplifying Function Literals

• When each parameter is used only once in the body of a function 
literal, and in the order in which they are passed:

• We can drop the parameter list 

• We simply write the body with an _ at the place where each 
parameter is used

For example,

((x: Int, y: Int) => (x + y))

becomes

_ + _
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Example Reductions

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

reduce(0, _+_, xs) ↦* 21

reduce(1, _*_, xs) ↦* 720

Note the multiple parameters

34



Min and Max, Simplified

def max(xs: List) = reduce(Int.MinValue, _ max _, xs)

def min(xs: List) = reduce(Int.MaxValue, _ min _, xs)
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Combinations of Maps and 
Reductions

෍

𝑥∈𝑥𝑠

𝑥2 + 1
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Combinations of Maps and 
Reductions

reduce(0, _+_, map(x => x*x + 1, xs))
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Summation

def summation(xs: List, f: Int => Int) = 
reduce(0, _+_, map(f, xs))
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Summation

def square(x: Int) = x * x

summation(xs, square(_)+1)
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