
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

September 24, 2019

Scala Style Guide

Scala has an official style guide that you should reference
while working on your homework projects:

https://docs.scala-lang.org/style/

2

https://docs.scala-lang.org/style/

Design Abstraction

3

def containsZero(xs: List): Boolean = xs match {
case Empty => false
case Cons(n, ys) => (n == 0) || containsZero(ys)

}

def containsOne(xs: List): Boolean = xs match {
case Empty => false
case Cons(n, ys) => (n == 1) || containsOne(ys)

}

Our Function Templates
Reveal Common Structure

4

def contains(m: Int, xs: List): Boolean = xs match {
case Empty => false
case Cons(n, ys) => (n == m) || contains(m, ys)

}

Our Function Templates
Reveal Common Structure

5

But Sometimes the Part We
Want to Abstract Is a Function

def below(m: Int, xs: List): List =
xs match {
case Empty => Empty
case Cons(n, ys) => {
if (n < m) Cons(n, below(m, ys))
else below(m, ys)

}
}

6

But Sometimes the Part We
Want to Abstract Is a Function

def above(m: Int, xs: List): List =
xs match {
case Empty => Empty
case Cons(n, ys) => {
if (n > m) Cons(n, above(m, ys))
else above(m, ys)

}
}

7

Taking Functions As
Parameters

def filter(f: (Int)=>Boolean, xs: List): List =
xs match {
case Empty => Empty
case Cons(n, ys) => {
if (f(n)) Cons(n, filter(f, ys))
else filter(f, ys)

}
}

8

Passing Functions as
Arguments

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

filter(((n: Int) => (n > 0)), xs) ↦*
Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

filter(((n: Int) => (n < 0)), xs) ↦*
Empty

filter(((n: Int) => (n < 3)), xs) ↦*
Cons(1,Cons(2,Empty))

9

Passing Functions as
Arguments

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

filter(((n: Int) => (n > 0)), xs) ↦*
Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

filter(((n: Int) => (n < 0)), xs) ↦*
Empty

filter(((n: Int) => (n < 3)), xs) ↦*
Cons(1,Cons(2,Empty))

These are
function literals

10

First-Class Functions

• Function literals are expressions with static arrow types
that reduce to function values

• The value type of a function value is also an arrow type

• Function values are first-class values:

• They are allowed to be passed as arguments

• They are allowed to be returned as results

11

Simplifying Function Literals

Parameter types on function literals are allowed to be
elided whenever the types are clear from context:

filter(((n: Int) => (n > 0)), xs)

can be written as

filter(((n) => (n > 0)), xs)

12

Simplifying Function Literals

• Parentheses around a single parameter is allowed to be
omitted

filter(((n) => (n > 0)), xs)

can be written as

filter(n => (n > 0), xs)

13

Simplifying Function Literals

• When a single parameter is used only once in the body of a function
literal:

• We can drop the parameter list

• We simply write the body with an _ at the place where the
parameter is used

For example,

((x: Int) => (x < 0))

becomes

_ < 0

14

Passing Function Literals As
Arguments

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

filter(_ < 3, xs) ↦* Cons(1,Cons(2,Empty))

15

Guidelines On Using Function
Literals

• Function literals are well-suited to situations in which:

• The function is only used once

• The function is not recursive

• The function does not constitute a key concept in the
problem domain

16

Comprehensions

2𝑥 | 𝑥 ∈ 𝑥𝑠

17

Mapping a Computation Over
a List

def double(xs: List) = xs match {
case Empty => Empty
case Cons(y,ys) => Cons(y+y, double(ys))

}

18

def negate(xs: List) = xs match {
case Empty => Empty
case Cons(y,ys) => Cons(-y, negate(ys))

}

Mapping a Computation Over
a List

19

Negation as a Comprehension

−𝑥 | 𝑥 ∈ 𝑥𝑠

20

Generalizing a Mapping
Computation

def map(f: Int=>Int, xs: List): List =
xs match {
case Empty => Empty
case Cons(y,ys) => Cons(f(y), map(f,ys))

}

21

Mapping a Computation Over
a List

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

negate(xs) ↦*
Cons(-1,Cons(-2,Cons(-3,Cons(-4,Cons(-5,Cons(-6,Empty))))))

double(xs) ↦*
Cons(1,Cons(4,Cons(9,Cons(16,Cons(25,Cons(36,Empty))))))

22

Mapping a Computation Over
a List

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

map(-_, xs) ↦*
Cons(-1,Cons(-2,Cons(-3,Cons(-4,Cons(-5,Cons(-6,Empty))))))

map(x => x+x, xs) ↦*
Cons(1,Cons(4,Cons(6,Cons(8,Cons(10,Cons(12,Empty))))))

23

Recall Our Sum Function Over
Lists

def sum(xs: List): Int = xs match {
case Empty => 0
case Cons(y,ys) => y + sum(ys)

}

24

In Mathematics, We Might
Write this as a Summation

෍

𝑥∈𝑥𝑠

𝑥

25

And Our Product Function
Over Lists

def product(xs: List): Int = xs match {
case Empty => 1
case Cons(y,ys) => y * product(ys)

}

26

In Mathematics, We Might
Write this as a Product

ෑ

𝑥∈𝑥𝑠

𝑥

27

We Abstract to a Reduction
Function Over Lists

def reduce(base: Int, f: (Int, Int) => Int, xs: List): Int =
xs match {
case Empty => base
case Cons(y,ys) => f(y, reduce(base, f, ys))

}

28

Example Reductions

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

reduce(0, (x,y) => x + y, xs) ↦* 21

reduce(1, (x,y) => x * y, xs) ↦* 720

29

Min and Max

def max(xs: List): Int =
reduce(Int.MinValue, (x,y) => if (x > y) x else y, xs)

def min(xs: List): Int =
reduce(Int.MaxValue, (x,y) => if (x < y) x else y, xs)

30

Min and Max

def max(xs: List): Int =
reduce(Int.MinValue, (x,y) => x max y, xs)

def min(xs: List): Int =
reduce(Int.MaxValue, (x,y) => x min y, xs)

31

Numbers in Scala have min/max binary operators:

Min and Max, Simplified

def max(xs: List) = reduce(Int.MinValue, _ max _, xs)

def min(xs: List) = reduce(Int.MaxValue, _ min _, xs)

32

Simplifying Function Literals

• When each parameter is used only once in the body of a function
literal, and in the order in which they are passed:

• We can drop the parameter list

• We simply write the body with an _ at the place where each
parameter is used

For example,

((x: Int, y: Int) => (x + y))

becomes

_ + _

33

Example Reductions

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

reduce(0, _+_, xs) ↦* 21

reduce(1, _*_, xs) ↦* 720

Note the multiple parameters

34

Min and Max, Simplified

def max(xs: List) = reduce(Int.MinValue, _ max _, xs)

def min(xs: List) = reduce(Int.MaxValue, _ min _, xs)

35

Combinations of Maps and
Reductions

෍

𝑥∈𝑥𝑠

𝑥2 + 1

36

Combinations of Maps and
Reductions

reduce(0, _+_, map(x => x*x + 1, xs))

37

Summation

def summation(xs: List, f: Int => Int) =
reduce(0, _+_, map(f, xs))

38

Summation

def square(x: Int) = x * x

summation(xs, square(_)+1)

39

