
Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

September 26, 2019



Announcements

• Homework 1 is due Tuesday

• Our new TA has office hours on Monday
(check Piazza annoucement for details)

• Homework 2 will also be posted on Tuesday

2



Guidelines On Using Function 
Literals

• Function literals are well-suited to situations in which:

• The function is only used once

• The function is not recursive

• The function does not constitute a key concept in the 
problem domain

3



Comprehensions

2𝑥 | 𝑥 ∈ 𝑥𝑠

4



Mapping a Computation Over 
a List

def double(xs: List) = xs match {
case Empty => Empty
case Cons(y,ys) => Cons(y+y, double(ys))

}

5



def negate(xs: List) = xs match {
case Empty => Empty
case Cons(y,ys) => Cons(-y, negate(ys))

}

Mapping a Computation Over 
a List

6



Negation as a Comprehension

−𝑥 | 𝑥 ∈ 𝑥𝑠

7



Generalizing a Mapping 
Computation

def map(f: Int=>Int, xs: List): List =
xs match {
case Empty => Empty
case Cons(y,ys) => Cons(f(y), map(f,ys))

}

8



Mapping a Computation Over 
a List

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

negate(xs) ↦*
Cons(-1,Cons(-2,Cons(-3,Cons(-4,Cons(-5,Cons(-6,Empty))))))

double(xs) ↦*
Cons(1,Cons(4,Cons(9,Cons(16,Cons(25,Cons(36,Empty))))))

9



Mapping a Computation Over 
a List

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

map(-_, xs) ↦*
Cons(-1,Cons(-2,Cons(-3,Cons(-4,Cons(-5,Cons(-6,Empty))))))

map(x => x+x, xs) ↦*
Cons(1,Cons(4,Cons(6,Cons(8,Cons(10,Cons(12,Empty))))))

10



Recall Our Sum Function Over 
Lists

def sum(xs: List): Int = xs match {
case Empty => 0
case Cons(y,ys) => y + sum(ys)

}

11



In Mathematics, We Might 
Write this as a Summation



𝑥∈𝑥𝑠

𝑥

12



And Our Product Function 
Over Lists

def product(xs: List): Int = xs match {
case Empty => 1
case Cons(y,ys) => y * product(ys)

}

13



In Mathematics, We Might 
Write this as a Product

ෑ

𝑥∈𝑥𝑠

𝑥

14



We Abstract to a Reduction 
Function Over Lists

def reduce(base: Int, f: (Int, Int) => Int, xs: List): Int =
xs match {
case Empty => base
case Cons(y,ys) => f(y, reduce(base, f, ys))

}

15



Example Reductions

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

reduce(0, (x,y) => x + y, xs) ↦* 21

reduce(1, (x,y) => x * y, xs) ↦* 720

16



Min and Max

def max(xs: List): Int =
reduce(Int.MinValue, (x,y) => if (x > y) x else y, xs)

def min(xs: List): Int =
reduce(Int.MaxValue, (x,y) => if (x < y) x else y, xs)

17



Min and Max

def max(xs: List): Int =
reduce(Int.MinValue, (x,y) => x max y, xs)

def min(xs: List): Int =
reduce(Int.MaxValue, (x,y) => x min y, xs)

18

Numbers in Scala have min/max binary operators:



Simplifying Function Literals

• When each parameter is used only once in the body of a function 
literal, and in the order in which they are passed:

• We can drop the parameter list 

• We simply write the body with an _ at the place where each 
parameter is used

For example,

((x: Int, y: Int) => (x + y))

becomes

_ + _

19



Example Reductions

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

reduce(0, _+_, xs) ↦* 21

reduce(1, _*_, xs) ↦* 720

Note the multiple parameters

20



Min and Max, Simplified

def max(xs: List) = reduce(Int.MinValue, _ max _, xs)

def min(xs: List) = reduce(Int.MaxValue, _ min _, xs)

21



Combinations of Maps and 
Reductions



𝑥∈𝑥𝑠

𝑥2 + 1

22



Combinations of Maps and 
Reductions

reduce(0, _+_, map(x => x*x + 1, xs))

23



Summation

def summation(xs: List, f: Int => Int) = 
reduce(0, _+_, map(f, xs))

24



Summation

def square(x: Int) = x * x

summation(xs, square(_)+1)

25



More on First-Class 
Functions

26



More Syntactic Sugar
for First-class Functions

• Functions defined with def can be passed as 
arguments whenever an expression of a compatible 
function type is expected

• What constitutes a compatible function type?

27



Partially Applied Functions

If we want to pass a function as an argument, but supply 
some of the arguments to the function ourselves, we can 
wrap an application to the function in a function literal:

map(x => x + 1, xs)

28



Partially Applied Functions

If we want to pass a function as an argument, but supply 
some of the arguments to the function ourselves, we can 
wrap an application to the function in a function literal:

map(x => x + 1, xs)

which is equivalent to

map(_ + 1, xs)

29



Eta Reduction
η-expansion: Wrapping a function in function literal that 
takes all of the arguments of f and immediately calls f 
with those arguments

η-reduction: Reducing a function literal that simply 
forwards all of its arguments with the target function

(x: Int) => square(x)

can be η-reduced to

square

30



Mapping a Computation Over 
a List

map(x => -x, xs)

We can use η-expansion to pass operators 
as arguments:

31



Mapping a Computation Over 
a List

map(-_, xs)

Note that we are also using η-expansion when we use 
underscore notation for function literals:

32



Returning Functions as 
Values

33



We Can Define Functions That 
Return Other Functions as Values

def adder(x: Int): Int => Int = {
def addX(y: Int) = x + y
addX

}

34



We Can Define Functions That 
Return Other Functions as Values

def adder(x: Int): Int => Int = {
def addX(y: Int) = x + y
addX

}

The explicit return type is needed because
Scala type inference assumes an unapplied

function is an error
35



We Can Define Functions That 
Return Other Functions as Values

def adder(x: Int) = {
def addX(y: Int) = x + y
addX _

}

Alternatively, we can η-expand addX to assure
the type checker that we really do intend to return a function

36



We Can Define Functions That 
Return Other Functions as Values

def adder(x: Int) = {
def addX(y: Int) = x + y
addX _

}

An underscore outside of parentheses in a function
application denotes the entire tuple of arguments

passed to the function is left unapplied
37



We Can Define Functions That 
Return Other Functions as Values

def adder(x: Int) = x + (_: Int)

We can instead define add by partially η-expanding 
the + operator. But then we need to annotate the 

second operand with a type.
38



We Can Define Functions That 
Return Other Functions as Values

def adder(x: Int): Int => Int = x + _

If we have the explicit return type, then the compiler has all 
the information it needs to correctly infer the type

39



Imports

40



Importing a Member of a 
Package

import scala.collection.immutable.List

41



Importing Multiple Members 
of a Package

import scala.collection.immutable.{List, Vector}

42



Importing and Renaming 
Members of a Package

import scala.collection.immutable.{List=>SList, Vector}

43



Importing All Members of a 
Package

import scala.collection.immutable._

Note that * is a valid identifier in Scala!

44



Combining Notations

import scala.collection.immutable.{_}

same meaning as:

import scala.collection.immutable._

45



Combining Notations

import scala.collection.immutable.{List=>SList,_}

Imports all members of the package but renames
List to SList

46



Combining Notations

import scala.collection.immutable.{List=>_,_}

Imports all members of the package
except for List

47



Importing a Package

import scala.collection.immutable

Now sub-packages can be denoted by shorter names:

immutable.List

48



Importing and Renaming 
Packages

import scala.collection.{immutable => I}

Allows members to be written like this:

I.List

49



Importing Members of An 
Object

import Arithmetic._

Allows members such as Arithmetic.gcd to be 
write like this:

gcd

50



Implicit Imports

import java.lang._
import scala._
import Predef._

The following imports are implicitly included
in your program:

51



Package java.lang

• Contains all the standard Java classes

• This import allows you to write things like:

Thread

instead of:

java.lang.Thread

52



Package scala

• Provides access to the standard Scala classes:

BigInt, BigDecimal, List, etc.

53



Object Predef

• Definitions of many commonly used types and 
methods, such as:

require, ensuring, assert

54



Limiting Visibility

55



Visibility Modifier Private

Modifier Explanation

no modifier public access

private
private to object

Arithmetic

For a method Arithmetic.reduce in package Rationals

56



Local Definitions

• As with constant definitions (val), we can make 
function definitions local to the body of a function

• The functions can be referred to only in the body of the 
enclosing function

57



def reduce() = {
val isPositive = 

((numerator < 0) & (denominator < 0)) | 
((numerator > 0) & (denominator > 0))

def reduceFromInts(num: Int, denom: Int) = {
require ((num >= 0) & (denom > 0))
val gcd = Arithmetic.gcd(num, denom)
val newNum = num/gcd
val newDenom = denom/gcd

if (isPositive) Rational(newNum, newDenom)
else Rational(-newNum, newDenom)

}
reduceFromInts(Arithmetic.abs(numerator), Arithmetic.abs(denominator))

} ensuring (_ match {
case Rational(n,d) => Arithmetic.gcd(n,d) == 1 & (d > 0)

})

Local Definitions

58



Local Imports

Unlike Java, Scala’s import statements are not limited to 
the top-level. They can appear almost anywhere:

def myHelperMethod(...) = {
import Arithmetic._
val someVal = gcd(abs(x), abs(y))
// ...

}

59



Takeaway Points

• Choose the syntactic construct that makes your first-
class functions clear and concise.

• Scala’s import statements are flexible. Try to cut the 
verbosity without introducing ambiguity.

• Scala gives you several tools to limit visibility / access
(This is important! Think encapsulation.)

• Syntactic sugar can help or hurt—think before using.

60


