Comp 311
Functional Programming

Nick Vrvilo, Two Sigma Investments
Robert “Corky” Cartwright, Rice University

October 3, 2019

Announcements

. Homework 2 is due two weeks from today

. Assignment description PDF on Piazza
. No provided “skeleton” code

. Simple interface (compilation/linking) check provided

Scala Type Hierarchy

Type Hierarchies

Inheritance (subclass / superclass relationships) form a
complete lattice in the Scala type system:

Each pair of classes has exactly one:
Least upper-bound
Greatest lower-bound

. The same applies to all value types

Hasse Diagrams

1 @119/ hu

Scala Type Lattice
/Any\

////AnyRef AnyVal
Llst //////777§<?i:\\\\
Strlng Int Double Unit ..
Nll
Null

Nothing

6

Parametric Polymorphism
(Parametric/Generic Types)

Parametric Types

. We have defined two forms of lists: lists of ints and lists
of shapes

. Many computations useful for one are useful for the
other:

. Map, reduce, filter, etc.

It would be better to define lists and their operations
once for all of these cases

Parametric Types

Higher-order functions take functions as arguments
and return functions as results

Li
ty

kewise, parametric types, a.k.a., a generic types, takes

nes as arguments and return types as results

Parametric Lists

. Every application of this parametric type to an

argument yields a new type:

abstract class List[T] {
def ++(ys: List[T]): List[T]
}

Parametric Lists

. Every application of this parametric type to an argument
yields a new type:

abstract class List[T <: Any] {
def ++(ys: List[T]):/List[T]

}

. We augment the declarations of type parameters to permit
an upper bound on all instantiations of a parameter

. By default, the bound is Any

Syntax of Parametric Class
Definitions
<modifiers> class C[T1l <: N,..,TN <:

N] extends N {
<ordinary class body>
}

. We denote type parametersas T1, T2, etc.

. We denote all other types with N, M, etc.

Syntax of Parametric Class
Definitions

<modifiers> class C[T1l <: N,..,TN <:
N] extends N {
<ordinary class body>

}

Declared type parameters T1, ..., TN are in scope
throughout the entire class definition, including:

. The bounds of type parameters

. The extends clause

. Object definitions must not be parametric

Parametric Lists

. Every application of this parametric type yields a new

type:
List[Int]

List[String]
List[List[Double]]
etc.

Parametric Lists

. Every application (a.k.a., instantiation) of this

parametric type yields a new type:

abstract class List[T] {
def ++(ys: List[T])/: List[T]

}

Note that our parametric type can be
instantiated with type parameters, including its own!

Parametric Lists

case class Empty[S]() extends List[S] {
def +#(ys: List[S]) = ys
}

case c/llass Cons[T](head: T, tail: List[T]) extends List[T] {
def [++(ys: List[T]) = Cons[T](head, tail ++ ys)
}

Our definition requires a separate type Empty[S] for
every instantiation of S. Thus we must define Empty as
a class rather than an object.

Covariance

. Can one instantiation of a parametric type be a subtype

of another?

. Currently our rules allow this only in the reflexive case:

List[Int] <: List[Int] 1n E

Covariance

. It would be useful to allow some instantiations to be

subtypes of another

. For example, we would like it to be the case that:

List[Int] <: List[Any]

Covariance

In general, we say that a parametric type C is
covariant with respect to its type parameter S if:

S <: T1in E
implies
C[S] <: CI[T] 1n E

. We must be careful that such relationships do not
break the soundness of our type system

Covariance

. For a parametric type such as:

abstract class List[T <: Any] {
def ++(ys: List[T]): List[T]

}

. And types S and T, suchthat S <: T insome
environment E:

. What must we check about the body of class L1st to
allow for L1st[S] <: List[T] in E?

Covariance

. Consider instantiations for types String and Any:

abstract class List[Any] {
def ++(ys: List[Any]): List[Any]
}
abstract class List[String] {
def ++(ys: List[String]): List[String]
}

Covariance

. If these were ordinary classes connected by an

extends class:

. We would need to ensure that the overriding
definition of ++ in class L1st[String] was
compatible with the overridden definition in

List[Any]

Covariance

abstract class List[Any] {
def ++(ys: List[Any]): List[Any]
}

abstract class List[String] extends List[Any] {
def ++(ys: List[String]): List[String]

} /
But if List[String] <: List[Any] in E
then this is not a valid override

Covariance

abstract class List[Any] {
def ++(ys: List[Any]): List[Any]
}

abstract class List[String] extends List[Any] {
def ++(ys: List[String]): List[String]
}

/

On the other hand, the return types
are not problematic

Covariance

From our example, we can glean the following rule:

. We allow a parametric class C to be covariant with
respect to a type parameter T so long as T does not
appear in the types of the method parameters of C

Covariance

abstract class List[+T] {}

. We stipulate that a parametric type is covariant in a
parameter T by prefixing a + at the definition of T

. (We will return to our definition of append later)

Covariance

case object Empty extends List[Nothing] {
} !

case clpss Cons[+T](head: T, tail: List][T])
extends| L1ist[T] {

}

Now we can define Empty as an object that extends the bottom of the List types

Covariance and Append

. The problem with our original declaration of append
was that it was not general enough:

. There is no reason to require that we always append
lists of identical type

. Really, we can append a L1st[S] for any supertype
of our L1st|[T]

. The result will be of type L1st[S]

Lower Bounds on Type
Parameters

. Thus far, we have allowed type parameters to include
upper bounds:
P T <: S

. They can also include lower bounds:

T >: U

. Or they can include both:

T >: S <: U

Parametric Functions

. Just as we can add type parameters to a class
definition, we can also add them to a function
definition

. The type parameters are in scope in the header and
body of the function

Covariance and Append

abstract class List[+T] {
def ++[S >: T](ys: List[S]): List[S]
}

case object Empty extends List[Nothing] {
def ++[S](ys: List[S]) = ys
}

case class Cons[+T](head: T, tail: List][T])
extends List[T] {

def ++[S >: T](ys: List[S]) = Cons(head, tail ++ ys)
}

Map Revisited

abstract class List[+T] {

aef map[U](f: T => U): List[U]
}

Why is this occurrence of T acceptable?

We Consider Specific
Instantiations

abstract class List[Any] {

aef map[U](f: Any => U): List[U]

}
abstract class List[String] {

def map[U](f: String => U): List[U]
} /

Then List[String] is an acceptable subtype of List[Any]
provided that (String => U) >: (Any => U)
which requires that String <: Any.

Generalizing Our Rules

. In our example, type parameter T occurs as the parameter
of an arrow type:

. (String => U) >: (Any => U) in E provided:
- String <: AnyinE
- U <: UinE

. Sosubtype L1st[String] <: List[Any]is
permitted

Contravariance

. In general, we say that a parametric type C is
contravariant with respect to its type parameter S if:

S <: T1in E
implies
C[T] <: C[S] 1n E

. We must be careful that such relationships do not
break the soundness of our type system

Contravariance

. Syntactically, contravariant type parameter

declarations are annotated with a minus sign:

case class F[-A,+B]

Annotating Polarity

abstract class List[+T] {
def ++[S >: T*](ys: List[S]): List[S"]
def map[U](f: T+ => U-): List[U*]

}

We Generalize Our Rules for
Checking Variance As Follows

. Covariant type parameters (declared with +) are
allowed to occur only in positive locations

. Type parameters with no annotation are allowed to
be used in all locations

. Contravariant type parameters are allowed to occur
only in negative locations

An Example of How We Might Use
Contravariant Type Parameters

abstract class Functionl[-S,+T] {
def apply(x:S): T
}

Map Revisited

case object Empty extends List[Nothing] {

def map[U] (f: Nothing => U) = Empty
}

Map Revisited

case class Cons[+T](head: T, tail: List][T])
extends List[T] {

aef map[U](f: T => U) =
Cons(f(head), tail.map(f))

Syntactic Sugar: Currying

. Scala provides special syntax for defining a function that
immediately returns another function:

def f(Xg: Ty, w ,Xy: Ty) = (Yo: Uy, w,yy: Uy) => expr
can be rewritten as:

def f (Xg: Tg, w ,Xy: Ty) (Yo: Ug, wyy: Uy) = expr

. Defining a function in this way is called “currying”, after the
computer scientist Haskell Curry

42

Folding Revisited

abstract class List[+T] {

def foldLeft[S](x: S)(f: (S, T) => S): S
def foldRight[S](x: S)(f: (T, S) => S): S

-/

Note that these functions are curried

43

Folding Revisited

case object Empty extends List[Nothing] {

def foldLeft[S](x: S)(f: (S, T) == S) = x
def foldRight[S](x: S)(f: (T, S) => S) = x

}

44

Folding Revisited

case class Cons[+T](head: T, tail: List][T])
extends List[T] {

def foldLeft[S](x: S)(f: (S, T) => S) =
tail.foldLeft(f(x, head)) (f)

def foldRight[S](x: S)(f: (T, S) => S) =
f(head, tail.foldRight(x)(f))

}
}

Note that foldLeft is tail-recursive, but foldRight is not;
therefore, foldLeft is usually preferred.

45

Fold Revisited

def foldLeft[S >: T](x: S)(f: (S5, S) =>5) =
tail.foldLeft(f(x, head), fT)

Cons(1l,Cons(2,Cons(3,Empty))).foldLeft(0)(+) »
Cons(2,Cons(3,Empty)).foldLeft(0 + 1, +) w»
Cons(2,Cons(3,Empty)).foldLeft(l, +) »

Cons(3,Empty).foldLeft(1l + 2, +) »
Cons(3,Empty).foldLeft(3, +) »
Empty.foldLeft(3 + 3, +) »
Empty.foldLeft(o6, +) »

6

46

Folding Revisited

def foldRight[S >: T](x: S)(f: (S, S) == S) =
f(tail.foldRight(x, f), head)

Cons(1l,Cons(2,Cons(3,Empty))).foldRight(0)(+) »
Cons(2,Cons(3,Empty)).foldRight(0, +) + 1 »
Cons(3,Empty).foldLeft(0, +) + 2 + 1+
Empty.foldLeft(0, +) + 3 + 2 + 1
O+3+2+1nwm

6

I + |

47

Reduce Revisited

abstract class List[+T] {

def reducelS >: T](f: (S, S) == S): S

} /
We can elide a zero element for the reduction
provided that the list is non-empty

48

Reduce Revisited

case object Empty extends List[Nothing] {

def reduce[S](f: (S, S) == S) =
throw new UnsupportedOperationException

49

Reduce Revisited

case class Cons[+T](head: T, tail: List][T])
extends List[T] {

def reduce[S >: T](f: (S, S) => S) =
talil.foldLeft[S] (head) ()

} ////
We explicitly instantiate the type parameter to foldLeft.
Without this, type inference will instantiate the type parameter

based on the static type of head (which is T) and then signal
an error that f is not of type (T, T) =>T.

50

Forall and Exists

abstract class List[+T] {

def forall(p: T => Boolean) =
map(p).foldLeft(true, &&)

def exists(p: T => Boolean) =
map(p) .foldLeft(false, ||)

51

Length

abstract class List[+T] { ..
def length: Int

}
case object Empty extends List[Nothing] { ..

def length = 0

}
case class Cons[+T](head: T, tail: List][T])
extends List[T] { ..

def length = map((:T) => 1).reduce(+)
}

In what real contexts could we justify this definition of length?

52

Pointwise Addition

def pointwiseAdd(xs: List[Int], ys: List[Int]): List[Int] = {
require (xs.length == ys.length)

(xs, ys) match {
case (Empty, Empty) => Empty
case (Cons(x1l, xsl1l), Cons(yl, ysl)) =>
Cons(x1l + yl, pointwiseAdd(xsl,ysl))

53

Generalizing to ZipWith

// 1n class List:
def zipWith[U,V](f: (T, U) => V)(that: List[U]): List[V] = {
require (this.length == that.length)

(this, that) match {
case (Empty, Empty) => Empty
case (Cons(x1l,xsl), Cons(yl,ysl)) =>
Cons(f(x1,yl), xsl.zipWith(f) (ysl))

54

Defining The Zip Function

// 1n class List:
def zip[U](that: List[U]) = zipWith((, : U))(that)

55

Defining Flatten

def flatten[S](xs: List[List[S]]) = {
xs.foldLeft (Empty) (#+)

}

Because the specific type of List needed,
we define as a top level function

56

Defining FlatMap

abstract class List[+T] {

def flatMap[S](f: T => List[S]) =
flatten(this.map(f))

}
}

In contrast to flatten, our flatMap function
can be defined on arbitrary lists

57

Defining FlatMap

. These definitions suggest that flatMap is the best
thought of as the more primitive notion

. We can define flatMap as a method on lists directly and
then define flatten in terms of it

58

Defining FlatMap

abstract class List[+T] { ..
def flatMap[S](f: Nothing => List[S]): List[S]
}

case object Empty extends List[Nothing] { ..
def flatMap[S](f: Nothing => List[S]) = Empty
}

case class Cons[+T](head: T, tail: List[T])
extends List[T] { ..
def flatMap[S](f: T => List[S]) =
f(head) ++ tail.flatMap(f)

59

Defining Filter

abstract class List[+T] {

def filter[U](p: T => Boolean): List[T]
}

60

Defining Filter

case object Empty extends List[Nothing] {

def filter[U](p: T => Boolean) = Empty
}

61

Defining Filter

case class Cons[+T](head: T, tail: List][T])
extends List[T] {

def filter[U](p: T => Boolean) = {
1f (p(head)) Cons(head, tail.filter(p))
else tail.filter(p)

}
}

62

For Expressions

As with all expressions, for expressions reduce to a
value

The value reduced to is a collection

The type of collection produced depends on the types of
collections iterated over

Each iteration produces a value to include in the
resulting collection

63

Many Maps and Filters Can Be
Expressed Using For Expressions

for (x <- xs) yield square(x) + 1

64

Many Maps and Filters Can Be
Expressed Using For Expressions

for (x <- xs) yield square(x) + 1

We call this a generator

65

Many Maps and Filters Can Be
Expressed Using For Expressions

for clauses yleld body

66

Many Maps and Filters Can Be
Expressed Using For Expressions

for (1 <- 1 to 10) vyield square(1i) + 1

N

Includes 10
(closed interval)

67

Many Maps and Filters Can Be
Expressed Using For Expressions

for (1 <- 0 until 10) yield square(1i) + 1

N

Does not include 10
(half-open interval)

68

Many Maps and Filters Can Be
Expressed Using For Expressions

Predicate filter

for { for even numbers
1 <- 0 until 19///////

1f 1 % 2 ==
} yield square(1i) + 1

\ Use curly braces in place of parents to

allow for multiple expression clauses

69

Many Maps and Filters Can Be
Expressed Using For Expressions

for (1 <- 0 until 10 by 2)
yield square(1i) + 1

Specifying a “step” for the range is
another way to get the even numbers

70

Many Maps and Filters Can Be
Expressed Using For Expressions

// BAD FORM
for (1 <- O until xs.length)
yvield square(xs.nth(i)) + 1

71

Many Maps and Filters Can Be
Expressed Using For Expressions

// Write this 1nstead
for (x <- xs)
yield square(x) + 1

72

Takeaways

Variance:

Consumed values are contra-variant
(e.g., function arguments)

Produced values are co-variant
(e.g., function return values)

Scala’s for-comprehensions are a concise short-hand for
composing monadic operations: flatMap, map, filter

73

