Comp 311
~unctional Programming

Eric Allen, Two Sigma Investments
Robert “Corky” Cartwright, Rice University
Sagnak Tasirlar, Two Sigma Investments



Partially Applied Functions

* |f we want to pass a function as an argument, but
supply some of the arguments to the function
ourselves, we can wrap an application to the
function in a function literal:

map(x => X + 1, Xs)



Partially Applied Functions

* |f we want to pass a function as an argument, but
supply some of the arguments to the function
ourselves, we can wrap an application to the
function in a function literal:

map(x => X + 1, Xs)
which is equivalent to

map(_ + 1, xs)



Partially Applied Functions

 Eta Expansion: \Wrapping a function in function
iteral that takes all of the arguments of t and
immediately calls t with those arguments

(x:Int) => square(x)
IS equivalent to

square



Mapping a Computation
Over a List

We can use eta expansion to pass operators
as arguments:

map(X => -X, XS)



Mapping a Computation
Over a List

We can use eta expansion to pass operators
as arguments:

map(_—, XS)



Returning Functions
as Values



We Can Define Functions That
Return Other Functions as Values

def add(x: Int): Int => Int = {
def addX(y: Int) = x + vy
addX

¥



We Can Define Functions That
Return Other Functions as Values

def add(x: Int): Int => Int = {
def addX(y: Int) /X + vy
addX

¥

The explicit return type Is needed because
Scala type inference assumes an unapplied
function is an error



We Can Define Functions That
Return Other Functions as Values

def add(x: Int) = {
def addX(y: Int) = x + vy
addX _
} \
Alternatively, we can eta-expand addX to assure
the type checker that we really do intend to return a function



We Can Define Functions That
Return Other Functions as Values

def add(x: Int) = {
def addX(y: Int) = X + y
addX _
Iy \
An underscore outside of parentheses in a function

application denotes the entire tuple of arguments
passed to the function



We Can Define Functions That
Return Other Functions as Values

def add(x: Int)

X + (_: Int)

We can instead define add by partially eta-expanding
the + operator. But then we need to annotate the
second operand with a type.



Aside: lype Annotations

* |n general, an expression annotated with a type is
itself an expression:

expr: Type

* If the static type of expr is a subtype of Type, then
the type of expr:Typeis Type




Partial Eta-Expansion

 We can partially eta-expand any function, but we
need to annotate the argument types:

def reduce@ =
reduce(@, _: (Int, Int) => Int, _: List)



Derivatives

def derivative(f: Double => Double, dx: Double) =
(x: Double) =>
(f(x + dx) - f(x)) /
dx



Derivatives

def f(x: Double) = x * x
def Df = derivative(f, 0.00001)

f(4) ~ 16
DF(4) ~ 8.00000999952033



Encapsulating dx

def D(f: Double => Double) = {
val dx = 0.00001
(x: Double) =>
(f(x + dx) - f(x)) /
dx



Encapsulating dx

def D(f: Double => Double) = {
val dx = 0.00001
(x: Doubhke) =>

(F(x +\dx) - f(x)) /
dx

Our returned function “remembers’”
these values



Applying a Derivative

def D(f: Double => Double) = {
val dx = 0.00001
(x: Double) =>
(f(x + dx) - f(x)) /
dx

D(F)(4) »

D((x: Double) => x * x))(4) ~



Applying a Derivative

D((x: Double) => x * x))(4) »

{val dx = 0.00001
(x: Double) =>
((x: Double) => x * x)(x + dx) -
(x: Double) => x * x)(x)) /
dx 1(4) -



Applying a Derivative

{(x: Double) =>
((x: Double) => x * x)(x + 0.00001) -
(x: Double) => x * x)(x)) /
0.00001}+(4) -~

((x: Double) => x * x)(4 + 0.00001) -
(x: Double) => x * (4)) /
0.00001 -~

We must be careful to substitute only
corresponding occurrences of x



Applying a Derivative

((x: Double) => x * x)(4 + 0.00001) -
(x: Double) => x * x)(4)) /
0.00001 -~

((x: Double) => x * x)(4.00001) -
(x: Double) => x * x)(4)) /
0.00001 ~

((4.00001 * 4.00001) - (4 * 4)) /
0.00001 ~



Applying a Derivative

((4.00001 * 4.00001) - (4 * 4)) /
0.00001 ~

(16.000080000099995 - 16) /
0.00001 ~

8.00000999952033E-5 / 0.00001 ~

8.00000999952033



Safe Substitution



Applying a Derivative

{(x: Double) =>
((x: Double) => x * x)(x + 0.00001) -
(x: Double) => x * x)(x)) /
0.00001}:(4) -~

((x: Double) => x * x)(4 + 0.00001) -

(x: Double) => x * (4)) /
0.00001 \

In cases like this one, we can avoid accidental
variable capture by selective renaming



Safe Substitution

(a.k.a. Alpha Renaming)

 We can ensure we never accidentally substitute the
wrong parameters by automatically renaming
constants, functions, and parameters with fresh
names

* A fresh name must not capture a name reterred
to In the scope of a parameter

* A fresh name must not be captured by a name in
an enclosing scope



Applying a Derivative

{(x: Double) =>
(Cy: Double) => vy * yD(x + 0.00001) -
(z: Double) => z * 2)(x)) /
0.00001}+(4) -~

(Cy: Double) => vy * y)(4 + 0.00001) -
(z: Double) => z * z)(4)) /
0.00001



Function Equivalence

 Now we have seen the three forms of function equivalence
stipulated by the Lambda Calculus:

* Alpha Renaming: Changing the names of a function’s
parameters does not affect the meaning of the function

* Beta Reduction: To apply a function to an argument, reduce
to the body of the function, substituting occurrences of the
parameter with the corresponding argument

* Eta Equivalence: Two functions are equivalent iff they are

extensionally equivalent: They give the same results for all
arguments



Parametric lypes



Parametric lypes

e \We have defined two forms of lists: lists of ints and
ists of shapes

 Many computations useful for one are usetul for the
other:

 Map, reduce, filter, etc.

* |t would be better to define lists and their
operations once for all of these cases



Parametric lypes

* Higher-order functions take functions as arguments
and return functions as results

* Likewise, parametric types, a.k.a., a generic types,
takes types as arguments and return types as
results




Parametric LiIsts

* Every application of this parametric type to an
argument yields a new type:

abstract class List[T] {
def ++(ys: List[T]): List[T]
I3



Parametric LiIsts

* Every application of this parametric type to an
argument yields a new type:

abstract class List[T <: Any] {
def ++(Cys: List[T])? List[T]
s

 We augment the declarations of type parameters to

permit an upper bound on all instantiations of a
parameter

* By default, the bound is Any



Syntax of Parametric Class
Definitions

<modifiers> class C[T1 <: N,..,TN <: N] extends N {
<ordinary class body>

¥

* We denote “naked” type parameters as T1, T2,
etc.

* \We denote all other types with N, M, etc.



Syntax of Parametric Class
Definitions

<modifiers> class C[T1 <: N,..,TN <: N] extends N {
<ordinary class body>

¥

 Declared type parameters 11, ..., TN are in scope
throughout the entire class detinition, including:

* The bounds of type parameters

e The extends clause

* Object definitions must not be parametric



Parametric LiIsts

* Every application of this parametric type yields a
new type:

List[Int]
List[String]
List[List[Double]]
etcC.



Parametric LiIsts

* Every application (a.k.a., instantiation) of this
parametric type yields a new type:

abstract class List[T] {
def ++(ys: List[T]): List[T]
s

Note that our parametric type can be instantiated with type
parameters, including its own!



Parametric LiIsts

case class Empty[S]() extends List[S] {
def ++(ys: List[S]) = ys
¥

case class Cons[T]Chead: T, tail: List[T]) extends List[T] {
def ++(ys: List[T]) = Cons[T](Chead, tail ++ ys)
¥



Parametric LiIsts

case class Empty[S]() extends List[S] {
def ++(ys: List[S]) = ys
¥

case class Cong[T]Chead: T, tail: List[T]) extends List[T] {
def ++(ys: Last[T]) = Cons[T](Chead, tail ++ ys)
¥

Our definition requires a separate type Empty[S] for
every instantiation of S. Thus we must define Empty as
a class rather than an object.



Type Environments

To explain how to type check expressions in the

context of parametric types, we must introduce the
notion of environments

We define a type parameter environment to hold a
collection of zero or more type parameter
declarations with their bounds

Type environments can be extended with more
declarations



Type Checking a Class
Definition

e Jo type check a parametric class definition:

* Check the declarations of the class in a new type
parameter environment that extends the
enclosing environment with all its type
parameters




Type Checking a Function
Definition
* Jo type check a function definition in environment E:

* Check that the types of all parameters are well-
formed

 Find the type of the body of the function,
substituting occurrences of parameters with their

types

* Ensure that the type of the body is a subtype of
the declared return type (in environment E)



Well-Formedness of Types

* Atype is well-formed in environment E iff:
e |fitis a well-defined non-parametric type
* |tis atype parameter T in environment &
* |tis an instantiation of a defined parametric type and:
* All of its type arguments are well-formed types in E

* All of its type arguments respect the bounds on
their corresponding type parameters



Subtyping With
Environments

e |t s non-sensical to compare types in separate type
environments:

case class Empty[S]() extends List[S] {
def ++(ys: List[S]) = ys
¥

case class Cons[T]Chead: T, tail: List[T]) extends List[T] {
def ++(ys: List[T]) = Cons[T](Chead, tail ++ ys)
¥

e | S a subtype of T?



Subtyping With
Environments

* We must modify our subtyping rules to refer to an
environment E:

e S<:Sink

e fS<:TiInNEandT<:UInEthenS<:UINnE



o |f:

Subtyping With
Environments

« class C[T1,..,TN] extends D[U1,..UM]

 and X1, ..., XN are well-formed in E

e then C[X1,.XN] <: D[U1,..,UM][T1~X1,.., TN=XN]

in E



Subtyping With

Environments
o |f:

e« class C[T1,..,TN] extends D[U1,..UM]

 and X1,..., XN are well-formed in E

+ then C[X1,.XN] <: D[U1,..,UM][T1~X1,.., TNoXN]

e -

We use this notation to indicate safe substitution of T1 for X1,
... TNfor XNin D[U1,..,UM]




Covariance

e Can one instantiation of a parametric type be a
subtype of another?

e Currently our rules allow this only in the reflexive
case:

List[Int] <: List[Int] 1n E



Covariance

e [t would be useful to allow some instantiations to be
subtypes of another

 For example, we would like it to be the case that:

List[Int] <: List[Any]



Covariance

* |n general, we say that a parametric type C is
covariant with respect to its type parameter S if:

S <: T 1inE
implies
C[S] <: C[T] 1n E

 \We must be careful that such relationships do not
break the soundness of our type system



Covariance

* For a parametric type such as:

abstract class List[T <: Any] {
def ++(ys: List[T]): List[T]
s

« AndtypesSand T, suchthatS <: Tin some
environment E:

* What must we check about the body of class
List to allow for L1st[S] <: List[T] in E?



Covariance

* Consider instantiations for types String and Any:

abstract class List[Any] {
def ++(ys: List[Any]): List[Any]
$
abstract class List[String] {
def ++(ys: List[String]): List[String]
$



Covariance

* |f these were ordinary classes connected by an
extends class:

* We would need to ensure that the overriding
definition of ++ in class L1st[String] was

compatible with the overridden detinition in
List[Any]



Covariance

abstract class List[Any] {
def ++(ys: List[Any]): List[Any]

}

abstract class List[String] extends List[Any] {
def ++(ys: List[String]): List[String]

}



Covariance

abstract class List[Any] {
def ++(ys: List[Any]): List[Any]
}
abstract class List[String] extends List[Any] {
def ++(ys: List[String]): List[String]
} /
But if List[String] <: List[Any] in E
then this i1s not a valid override



Covariance

abstract class List[Any] {
def ++(ys: List[Any]): List[Any]

}
abstract class List[String] extends List[Any] {

def ++(ys: List[String]): List[String]

/

On the other hand, the return types
are not problematic

¥



Covariance

* From our example, we can glean the tollowing rule:

* We allow a parametric class C to be covariant

with respect to a type parameter T so long as T

does not appear in the types of the method
parameters of C



Covariance

abstract class List[+T] {}

* We stipulate that a parametric type Is covariant in a
parameter T by prefixing a + at the definition of T

* (We will return to our definition of append later)



Covariance

case object Empty extends List[Nothing] {
h

case class Cons[+T]Chead: T, tail: List[T])
extends List[T] {

¥



Covariance

case object Empty extends List[Nothing] {
h

case\class Cons[+T](head: T, tail: List[T])

extends List[T]
s

Now we can define Empty as an object that extends the bottom of the List
types



Covariance and Append

* The problem with our original declaration of
append was that it was not general enough:

* There is no reason to require that we always
append lists of identical type

* Really, we can append a L1st[S] for any
supertype of our L1st[T]

* The result will be of type L1st[S]



| ower Bounds on lype
Parameters

* Thus far, we have allowed type parameters to include
upper bounds:

T <: S
* [hey can also include lower bounds:

T >: U
* Or they can include both:
T>: S <: U



Parametric Functions

* Just as we can add type parameters to a class
definition, we can also add them to a function
definition

* [he type parameters are in scope In the header
and body of the function



Covariance and Append

abstract class List[+T] {
def ++[S >: T](Cys: List[S]): List[S]
ks

case object Empty extends List[Nothing] {
def ++[S](ys: List[S]) = ys
¥

case class Cons[+T]Chead: T, tail: List[T])
extends List[T] {

def ++[S >: T](ys: List[S]) = Cons(Chead, tail ++ ys)
}



Map Revisited

abstract class List[+T] {

aef map[U]J(f: T => U): List[U]
}

Why is this occurrence of T acceptable?



We Consider Specific
Instantiations

abstract class List[Any] {

def map[U]J(f: Any => U): List[U]
1 t
abstract class List[String] {

4'_?

def map[U](f: String => U): List[U]

} /
Then List[String] is an acceptable subtype of List/Any]
provided that (String => U) >: (Any => U)

which requires that String <: Any.




Generalizing Our Rules

* In our example, type parameter T occurs as the
parameter of an arrow type:

* (String => U) >: (Any => U) in E provided:
 String <: AnyinkE
e U <: UinkE

* So subtype List[String] <: List[Any]is
permitted



To Check Variance, We Annotate
Each lype Position With A Polarity

* Recursively descend a class definition:
* Attop level, all positions are positive
e Polarity is flipped at method parameter positions

e Polarity is flipped at method type parameter
positions

e Polarity is flipped at arrow type parameter
positions



Annotating Polarity

abstract class List[+T] {
def ++[S >: T7](ys: List[S]): List[S*]
def map[U ]J(f: T+ => U): List[U*]

$



We Generalize Our Rules for
Checking Variance As Follows

 Covariant type parameters (declared with +) are
allowed to occur only In positive locations

* [ype parameters with no annotation are allowed
to be used in all locations



Contravariance



Contravariance

* |n general, we say that a parametric type C is
contravariant with respect to its type parameter S if:

S <: T 1inE
implies
C[T] <: C[S] 1n E

 \We must be careful that such relationships do not
break the soundness of our type system



Contravariance

e Syntactically, contravariant type parameter
declarations are annotated with a minus sign:

case class F[-A,+B]



To Check Variance, We Annotate
Each Type Location With A Polarity

Recursively descend a class definition:

At top level, all locations are positive

Polarity is flipped at method parameter positions
Polarity is flipped at method type parameter positions
Polarity is flipped at arrow type parameter positions

Polarity is flipped at positions of contravariant type
parameters




Annotating Polarity

abstract class List[+T] {
def ++[S >: T7](ys: List[S]): List[S*]
def map[U ]J(f: T+ => U): List[U*]

$



We Generalize Our Rules for
Checking Variance As Follows

 Covariant type parameters (declared with +) are
allowed to occur only in positive locations

* [ype parameters with no annotation are allowed
to be used In all locations

* Contravariant type parameters are allowed to
occur only In negative locations



An Example of How We Might Use
Contravariant Type Parameters

abstract class Functionl[-S,+T] {
def apply(x:S): T
}



Map Revisited

case object Empty extends List[Nothing] {

def map[U](f: Nothing => U) = Empty
}



Map Revisited

case class Cons[+T](Chead: T, tail: List[T])
extends List[T] {

aef map[U]J(f: T => U) =
Cons(fChead), tail.map(f))



