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Partially Applied Functions

• If we want to pass a function as an argument, but 
supply some of the arguments to the function 
ourselves, we can wrap an application to the 
function in a function literal: 

map(x => x + 1, xs)



Partially Applied Functions

• If we want to pass a function as an argument, but 
supply some of the arguments to the function 
ourselves, we can wrap an application to the 
function in a function literal: 

map(x => x + 1, xs)

which is equivalent to 

map(_ + 1, xs)



Partially Applied Functions
• Eta Expansion: Wrapping a function in function 

literal that takes all of the arguments of f and 
immediately calls f with those arguments 

(x:Int) => square(x)

is equivalent to 

square



Mapping a Computation 
Over a List

map(x => -x, xs)

We can use eta expansion to pass operators  
as arguments:



Mapping a Computation 
Over a List

map(-_, xs)

We can use eta expansion to pass operators  
as arguments:



Returning Functions 
as Values



We Can Define Functions That 
Return Other Functions as Values

  def add(x: Int): Int => Int = {
    def addX(y: Int) = x + y
    addX
  }



We Can Define Functions That 
Return Other Functions as Values

  def add(x: Int): Int => Int = {
    def addX(y: Int) = x + y
    addX
  }

The explicit return type is needed because 
Scala type inference assumes an unapplied 

function is an error



We Can Define Functions That 
Return Other Functions as Values

  def add(x: Int) = {
    def addX(y: Int) = x + y
    addX _
  }

Alternatively, we can eta-expand addX to assure 
the type checker that we really do intend to return a function



We Can Define Functions That 
Return Other Functions as Values

  def add(x: Int) = {
    def addX(y: Int) = x + y
    addX _
  }

An underscore outside of parentheses in a function 
application denotes the entire tuple of arguments 

passed to the function 



We Can Define Functions That 
Return Other Functions as Values

  def add(x: Int) = x + (_: Int)

We can instead define add by partially eta-expanding 
the + operator. But then we need to annotate the 

second operand with a type.



Aside: Type Annotations

• In general, an expression annotated with a type is 
itself an expression: 

• If the static type of expr is a subtype of Type, then 
the type of expr:Type is Type

expr: Type



Partial Eta-Expansion

• We can partially eta-expand any function, but we 
need to annotate the argument types: 

def reduce0 = 
    reduce(0, _: (Int, Int) => Int, _: List)



Derivatives

  def derivative(f: Double => Double, dx: Double) = 
    (x: Double) => 
      (f(x + dx) - f(x)) /
        dx



Derivatives

def f(x: Double) = x * x
def Df = derivative(f, 0.00001)

f(4) ↦ 16
Df(4) ↦ 8.00000999952033



Encapsulating dx

  def D(f: Double => Double) = {
    val dx = 0.00001
    (x: Double) => 
      (f(x + dx) - f(x)) /
        dx    
  }



Encapsulating dx

  def D(f: Double => Double) = {
    val dx = 0.00001
    (x: Double) => 
      (f(x + dx) - f(x)) /
        dx    
  }

Our returned function “remembers” 
these values



Applying a Derivative
  def D(f: Double => Double) = {
    val dx = 0.00001
    (x: Double) => 
      (f(x + dx) - f(x)) /
        dx    
  }

D(f)(4) ↦

D((x: Double) => x * x))(4) ↦ 



Applying a Derivative

D((x: Double) => x * x))(4) ↦

{val dx = 0.00001
 (x: Double) => 
    ((x: Double) => x * x)(x + dx) - 
     (x: Double) => x * x)(x)) /
       dx    }(4) ↦



Applying a Derivative
{(x: Double) => 
    ((x: Double) => x * x)(x + 0.00001) - 
     (x: Double) => x * x)(x)) /
       0.00001}(4) ↦

((x: Double) => x * x)(4 + 0.00001) - 
  (x: Double) => x * x)(4)) /
 0.00001 ↦

We must be careful to substitute only 
corresponding occurrences of x



Applying a Derivative
((x: Double) => x * x)(4 + 0.00001) - 
  (x: Double) => x * x)(4)) /
 0.00001 ↦

((x: Double) => x * x)(4.00001) - 
  (x: Double) => x * x)(4)) /
 0.00001 ↦

((4.00001 * 4.00001) - (4 * 4)) /
 0.00001 ↦



Applying a Derivative
((4.00001 * 4.00001) - (4 * 4)) /
 0.00001 ↦

(16.000080000099995 - 16) /
 0.00001 ↦

8.00000999952033E-5 / 0.00001 ↦

8.00000999952033



Safe Substitution



Applying a Derivative
{(x: Double) => 
    ((x: Double) => x * x)(x + 0.00001) - 
     (x: Double) => x * x)(x)) /
       0.00001}(4) ↦

((x: Double) => x * x)(4 + 0.00001) - 
  (x: Double) => x * x)(4)) /
 0.00001

In cases like this one, we can avoid accidental 
variable capture by selective renaming



Safe Substitution  
(a.k.a. Alpha Renaming)

• We can ensure we never accidentally substitute the 
wrong parameters by automatically renaming 
constants, functions, and parameters with fresh 
names 

• A fresh name must not capture a name referred 
to in the scope of a parameter 

• A fresh name must not be captured by a name in 
an enclosing scope



Applying a Derivative
{(x: Double) => 
    ((y: Double) => y * y)(x + 0.00001) - 
     (z: Double) => z * z)(x)) /
       0.00001}(4) ↦

((y: Double) => y * y)(4 + 0.00001) - 
  (z: Double) => z * z)(4)) /
 0.00001



Function Equivalence
• Now we have seen the three forms of function equivalence 

stipulated by the Lambda Calculus: 

• Alpha Renaming: Changing the names of a function’s 
parameters does not affect the meaning of the function 

• Beta Reduction: To apply a function to an argument, reduce 
to the body of the function, substituting occurrences of the 
parameter with the corresponding argument 

• Eta Equivalence: Two functions are equivalent iff they are 
extensionally equivalent: They give the same results for all 
arguments



Parametric Types



Parametric Types
• We have defined two forms of lists: lists of ints and 

lists of shapes 

• Many computations useful for one are useful for the 
other: 

• Map, reduce, filter, etc. 

• It would be better to define lists and their 
operations once for all of these cases



Parametric Types

• Higher-order functions take functions as arguments 
and return functions as results 

• Likewise, parametric types, a.k.a., a generic types, 
takes types as arguments and return types as 
results



Parametric Lists
• Every application of this parametric type to an 

argument yields a new type: 

abstract class List[T] {
  def ++(ys: List[T]): List[T]
}



Parametric Lists
• Every application of this parametric type to an 

argument yields a new type: 

• We augment the declarations of type parameters to 
permit an upper bound on all instantiations of a 
parameter  

• By default, the bound is Any

abstract class List[T <: Any] {
  def ++(ys: List[T]): List[T]
}



Syntax of Parametric Class 
Definitions

• We denote “naked” type parameters as T1, T2, 
etc. 

• We denote all other types with N, M, etc.

<modifiers> class C[T1 <: N,..,TN <: N] extends N {
   <ordinary class body>
}



Syntax of Parametric Class 
Definitions

• Declared type parameters T1, …, TN are in scope 
throughout the entire class definition, including: 

• The bounds of type parameters 

• The extends clause 

• Object definitions must not be parametric

<modifiers> class C[T1 <: N,..,TN <: N] extends N {
   <ordinary class body>
}



Parametric Lists
• Every application of this parametric type yields a 

new type: 

List[Int]
List[String]

List[List[Double]]
etc.



Parametric Lists
• Every application (a.k.a., instantiation) of this 

parametric type yields a new type: 

abstract class List[T] {
  def ++(ys: List[T]): List[T]
}

Note that our parametric type can be instantiated with type 
parameters, including its own!



Parametric Lists

case class Empty[S]() extends List[S] {
  def ++(ys: List[S]) = ys
}

case class Cons[T](head: T, tail: List[T]) extends List[T] {
  def ++(ys: List[T]) = Cons[T](head, tail ++ ys)
}



Parametric Lists

case class Empty[S]() extends List[S] {
  def ++(ys: List[S]) = ys
}

case class Cons[T](head: T, tail: List[T]) extends List[T] {
  def ++(ys: List[T]) = Cons[T](head, tail ++ ys)
}

Our definition requires a separate type Empty[S] for  
every instantiation of S. Thus we must define Empty as 

a class rather than an object.



Type Environments
• To explain how to type check expressions in the 

context of parametric types, we must introduce the 
notion of environments 

• We define a type parameter environment to hold a 
collection of zero or more type parameter 
declarations with their bounds 

• Type environments can be extended with more 
declarations



Type Checking a Class 
Definition

• To type check a parametric class definition: 

• Check the declarations of the class in a new type 
parameter environment that extends the 
enclosing environment with all its type 
parameters



Type Checking a Function 
Definition

• To type check a function definition in environment E: 

• Check that the types of all parameters are well-
formed 

• Find the type of the body of the function, 
substituting occurrences of parameters with their 
types 

• Ensure that the type of the body is a subtype of 
the declared return type (in environment E)



Well-Formedness of Types
• A type is well-formed in environment E iff: 

• If it is a well-defined non-parametric type 

• It is a type parameter T in environment E 

• It is an instantiation of a defined parametric type and: 

• All of its type arguments are well-formed types in E  

• All of its type arguments respect the bounds on 
their corresponding type parameters



Subtyping With 
Environments

• It is non-sensical to compare types in separate type 
environments: 

• Is S a subtype of T?

case class Empty[S]() extends List[S] {
  def ++(ys: List[S]) = ys
}

case class Cons[T](head: T, tail: List[T]) extends List[T] {
  def ++(ys: List[T]) = Cons[T](head, tail ++ ys)
}



Subtyping With 
Environments

• We must modify our subtyping rules to refer to an 
environment E: 

• S <: S in E 

• If S <: T in E and T <: U in E then S <: U in E



Subtyping With 
Environments

• If: 

• class C[T1,..,TN] extends D[U1,…UM]  

• and X1,…,XN are well-formed in E

• then C[X1,…XN] <: D[U1,…,UM][T1↦X1,…,TN↦XN] 
in E



Subtyping With 
Environments

• If: 

• class C[T1,..,TN] extends D[U1,…UM]  

• and X1,…,XN are well-formed in E

• then C[X1,…XN] <: D[U1,…,UM][T1↦X1,…,TN↦XN] 
in E

We use this notation to indicate safe substitution of T1 for X1, 
… TN for XN in D[U1,…,UM]



Covariance

• Can one instantiation of a parametric type be a 
subtype of another? 

• Currently our rules allow this only in the reflexive 
case: 

List[Int] <: List[Int] in E



Covariance
• It would be useful to allow some instantiations to be 

subtypes of another 

• For example, we would like it to be the case that: 

List[Int] <: List[Any]



Covariance
• In general, we say that a parametric type C is 

covariant with respect to its type parameter S if: 

• We must be careful that such relationships do not 
break the soundness of our type system

S <: T in E

implies 

C[S] <: C[T] in E



Covariance
• For a parametric type such as: 

• And types S and T, such that S <: T in some 
environment E: 

• What must we check about the body of class 
List to allow for List[S] <: List[T] in E?

abstract class List[T <: Any] {
  def ++(ys: List[T]): List[T]
}



Covariance
• Consider instantiations for types String and Any: 

abstract class List[Any] {
  def ++(ys: List[Any]): List[Any]
}
abstract class List[String] {
  def ++(ys: List[String]): List[String]
}



Covariance

• If these were ordinary classes connected by an 
extends class: 

• We would need to ensure that the overriding 
definition of ++ in class List[String] was 
compatible with the overridden definition in 
List[Any]



Covariance

abstract class List[Any] {
  def ++(ys: List[Any]): List[Any]
}
abstract class List[String] extends List[Any] {
  def ++(ys: List[String]): List[String]
}



Covariance

abstract class List[Any] {
  def ++(ys: List[Any]): List[Any]
}
abstract class List[String] extends List[Any] {
  def ++(ys: List[String]): List[String]
}

But if List[String] <: List[Any] in E 
then this is not a valid override



Covariance

abstract class List[Any] {
  def ++(ys: List[Any]): List[Any]
}
abstract class List[String] extends List[Any] {
  def ++(ys: List[String]): List[String]
}

On the other hand, the return types 
are not problematic



Covariance

• From our example, we can glean the following rule: 

• We allow a parametric class C to be covariant 
with respect to a type parameter T so long as T 
does not appear in the types of the method 
parameters of C



Covariance

• We stipulate that a parametric type is covariant in a 
parameter T by prefixing a + at the definition of T 

• (We will return to our definition of append later)

abstract class List[+T] {}



Covariance

case object Empty extends List[Nothing] {
}

case class Cons[+T](head: T, tail: List[T]) 
extends List[T] {
}



Covariance

case object Empty extends List[Nothing] {
}

case class Cons[+T](head: T, tail: List[T]) 
extends List[T] {
}

Now we can define Empty as an object that extends the bottom of the List 
types



Covariance and Append
• The problem with our original declaration of 

append was that it was not general enough: 

• There is no reason to require that we always 
append lists of identical type 

• Really, we can append a List[S] for any 
supertype of our List[T] 

• The result will be of type List[S]



Lower Bounds on Type 
Parameters

• Thus far, we have allowed type parameters to include 
upper bounds: 

• They can also include lower bounds: 

• Or they can include both: 

T <: S

T >: U

T >: S <: U



Parametric Functions

• Just as we can add type parameters to a class 
definition, we can also add them to a function 
definition 

• The type parameters are in scope in the header 
and body of the function



Covariance and Append
abstract class List[+T] {
  def ++[S >: T](ys: List[S]): List[S]
}

case object Empty extends List[Nothing] {
  def ++[S](ys: List[S]) = ys
}

case class Cons[+T](head: T, tail: List[T]) 
extends List[T] {
  def ++[S >: T](ys: List[S]) = Cons(head, tail ++ ys)
}



Map Revisited

abstract class List[+T] {
  …
  def map[U](f: T => U): List[U]
}

Why is this occurrence of T acceptable?



We Consider Specific 
Instantiations

abstract class List[Any] {
  …
  def map[U](f: Any => U): List[U]
}
abstract class List[String] {
  …
  def map[U](f: String => U): List[U]
}

Then List[String] is an acceptable subtype of List[Any] 
provided that (String => U) >: (Any => U) 

which requires that String <: Any.



Generalizing Our Rules
• In our example, type parameter T occurs as the 

parameter of an arrow type: 

• (String => U)  >: (Any => U) in E provided: 

• String <: Any in E 

• U <: U in E 

• So subtype List[String] <: List[Any] is 
permitted



To Check Variance, We Annotate 
Each Type Position With A Polarity
• Recursively descend a class definition: 

• At top level, all positions are positive 

• Polarity is flipped at method parameter positions 

• Polarity is flipped at method type parameter 
positions 

• Polarity is flipped at arrow type parameter 
positions



Annotating Polarity

abstract class List[+T] {
  def ++[S- >: T+](ys: List[S-]): List[S+]
  def map[U-](f: T+ => U-): List[U+]
}



We Generalize Our Rules for 
Checking Variance As Follows

• Covariant type parameters (declared with +) are 
allowed to occur only in positive locations 

• Type parameters with no annotation are allowed 
to be used in all locations



Contravariance



Contravariance
• In general, we say that a parametric type C is 

contravariant with respect to its type parameter S if: 

• We must be careful that such relationships do not 
break the soundness of our type system

S <: T in E

implies 

C[T] <: C[S] in E



Contravariance

• Syntactically, contravariant type parameter 
declarations are annotated with a minus sign: 

case class F[-A,+B]



To Check Variance, We Annotate 
Each Type Location With A Polarity
• Recursively descend a class definition: 

• At top level, all locations are positive 

• Polarity is flipped at method parameter positions 

• Polarity is flipped at method type parameter positions 

• Polarity is flipped at arrow type parameter positions 

• Polarity is flipped at positions of contravariant type 
parameters



Annotating Polarity

abstract class List[+T] {
  def ++[S- >: T+](ys: List[S-]): List[S+]
  def map[U-](f: T+ => U-): List[U+]
}



We Generalize Our Rules for 
Checking Variance As Follows

• Covariant type parameters (declared with +) are 
allowed to occur only in positive locations 

• Type parameters with no annotation are allowed 
to be used in all locations 

• Contravariant type parameters are allowed to 
occur only in negative locations



An Example of How We Might Use 
Contravariant Type Parameters

abstract class Function1[-S,+T] {
  def apply(x:S): T
}



Map Revisited

case object Empty extends List[Nothing] {
  …
  def map[U](f: Nothing => U) = Empty
}



Map Revisited
case class Cons[+T](head: T, tail: List[T]) 
extends List[T] {
  …
  def map[U](f: T => U) = 
    Cons(f(head), tail.map(f))
}


