
Comp 311
Functional Programming

Eric Allen, Two Sigma Investments
Robert “Corky” Cartwright, Rice University
Sağnak Taşırlar, Two Sigma Investments

Partially Applied Functions

• If we want to pass a function as an argument, but
supply some of the arguments to the function
ourselves, we can wrap an application to the
function in a function literal:

map(x => x + 1, xs)

Partially Applied Functions

• If we want to pass a function as an argument, but
supply some of the arguments to the function
ourselves, we can wrap an application to the
function in a function literal:

map(x => x + 1, xs)

which is equivalent to

map(_ + 1, xs)

Partially Applied Functions
• Eta Expansion: Wrapping a function in function

literal that takes all of the arguments of f and
immediately calls f with those arguments

(x:Int) => square(x)

is equivalent to

square

Mapping a Computation
Over a List

map(x => -x, xs)

We can use eta expansion to pass operators
as arguments:

Mapping a Computation
Over a List

map(-_, xs)

We can use eta expansion to pass operators
as arguments:

Returning Functions
as Values

We Can Define Functions That
Return Other Functions as Values

 def add(x: Int): Int => Int = {
 def addX(y: Int) = x + y
 addX
 }

We Can Define Functions That
Return Other Functions as Values

 def add(x: Int): Int => Int = {
 def addX(y: Int) = x + y
 addX
 }

The explicit return type is needed because
Scala type inference assumes an unapplied

function is an error

We Can Define Functions That
Return Other Functions as Values

 def add(x: Int) = {
 def addX(y: Int) = x + y
 addX _
 }

Alternatively, we can eta-expand addX to assure
the type checker that we really do intend to return a function

We Can Define Functions That
Return Other Functions as Values

 def add(x: Int) = {
 def addX(y: Int) = x + y
 addX _
 }

An underscore outside of parentheses in a function
application denotes the entire tuple of arguments

passed to the function

We Can Define Functions That
Return Other Functions as Values

 def add(x: Int) = x + (_: Int)

We can instead define add by partially eta-expanding
the + operator. But then we need to annotate the

second operand with a type.

Aside: Type Annotations

• In general, an expression annotated with a type is
itself an expression:

• If the static type of expr is a subtype of Type, then
the type of expr:Type is Type

expr: Type

Partial Eta-Expansion

• We can partially eta-expand any function, but we
need to annotate the argument types:

def reduce0 =
 reduce(0, _: (Int, Int) => Int, _: List)

Derivatives

 def derivative(f: Double => Double, dx: Double) =
 (x: Double) =>
 (f(x + dx) - f(x)) /
 dx

Derivatives

def f(x: Double) = x * x
def Df = derivative(f, 0.00001)

f(4) ↦ 16
Df(4) ↦ 8.00000999952033

Encapsulating dx

 def D(f: Double => Double) = {
 val dx = 0.00001
 (x: Double) =>
 (f(x + dx) - f(x)) /
 dx
 }

Encapsulating dx

 def D(f: Double => Double) = {
 val dx = 0.00001
 (x: Double) =>
 (f(x + dx) - f(x)) /
 dx
 }

Our returned function “remembers”
these values

Applying a Derivative
 def D(f: Double => Double) = {
 val dx = 0.00001
 (x: Double) =>
 (f(x + dx) - f(x)) /
 dx
 }

D(f)(4) ↦

D((x: Double) => x * x))(4) ↦

Applying a Derivative

D((x: Double) => x * x))(4) ↦

{val dx = 0.00001
 (x: Double) =>
 ((x: Double) => x * x)(x + dx) -
 (x: Double) => x * x)(x)) /
 dx }(4) ↦

Applying a Derivative
{(x: Double) =>
 ((x: Double) => x * x)(x + 0.00001) -
 (x: Double) => x * x)(x)) /
 0.00001}(4) ↦

((x: Double) => x * x)(4 + 0.00001) -
 (x: Double) => x * x)(4)) /
 0.00001 ↦

We must be careful to substitute only
corresponding occurrences of x

Applying a Derivative
((x: Double) => x * x)(4 + 0.00001) -
 (x: Double) => x * x)(4)) /
 0.00001 ↦

((x: Double) => x * x)(4.00001) -
 (x: Double) => x * x)(4)) /
 0.00001 ↦

((4.00001 * 4.00001) - (4 * 4)) /
 0.00001 ↦

Applying a Derivative
((4.00001 * 4.00001) - (4 * 4)) /
 0.00001 ↦

(16.000080000099995 - 16) /
 0.00001 ↦

8.00000999952033E-5 / 0.00001 ↦

8.00000999952033

Safe Substitution

Applying a Derivative
{(x: Double) =>
 ((x: Double) => x * x)(x + 0.00001) -
 (x: Double) => x * x)(x)) /
 0.00001}(4) ↦

((x: Double) => x * x)(4 + 0.00001) -
 (x: Double) => x * x)(4)) /
 0.00001

In cases like this one, we can avoid accidental
variable capture by selective renaming

Safe Substitution
(a.k.a. Alpha Renaming)

• We can ensure we never accidentally substitute the
wrong parameters by automatically renaming
constants, functions, and parameters with fresh
names

• A fresh name must not capture a name referred
to in the scope of a parameter

• A fresh name must not be captured by a name in
an enclosing scope

Applying a Derivative
{(x: Double) =>
 ((y: Double) => y * y)(x + 0.00001) -
 (z: Double) => z * z)(x)) /
 0.00001}(4) ↦

((y: Double) => y * y)(4 + 0.00001) -
 (z: Double) => z * z)(4)) /
 0.00001

Function Equivalence
• Now we have seen the three forms of function equivalence

stipulated by the Lambda Calculus:

• Alpha Renaming: Changing the names of a function’s
parameters does not affect the meaning of the function

• Beta Reduction: To apply a function to an argument, reduce
to the body of the function, substituting occurrences of the
parameter with the corresponding argument

• Eta Equivalence: Two functions are equivalent iff they are
extensionally equivalent: They give the same results for all
arguments

Parametric Types

Parametric Types
• We have defined two forms of lists: lists of ints and

lists of shapes

• Many computations useful for one are useful for the
other:

• Map, reduce, filter, etc.

• It would be better to define lists and their
operations once for all of these cases

Parametric Types

• Higher-order functions take functions as arguments
and return functions as results

• Likewise, parametric types, a.k.a., a generic types,
takes types as arguments and return types as
results

Parametric Lists
• Every application of this parametric type to an

argument yields a new type:

abstract class List[T] {
 def ++(ys: List[T]): List[T]
}

Parametric Lists
• Every application of this parametric type to an

argument yields a new type:

• We augment the declarations of type parameters to
permit an upper bound on all instantiations of a
parameter

• By default, the bound is Any

abstract class List[T <: Any] {
 def ++(ys: List[T]): List[T]
}

Syntax of Parametric Class
Definitions

• We denote “naked” type parameters as T1, T2,
etc.

• We denote all other types with N, M, etc.

<modifiers> class C[T1 <: N,..,TN <: N] extends N {
 <ordinary class body>
}

Syntax of Parametric Class
Definitions

• Declared type parameters T1, …, TN are in scope
throughout the entire class definition, including:

• The bounds of type parameters

• The extends clause

• Object definitions must not be parametric

<modifiers> class C[T1 <: N,..,TN <: N] extends N {
 <ordinary class body>
}

Parametric Lists
• Every application of this parametric type yields a

new type:

List[Int]
List[String]

List[List[Double]]
etc.

Parametric Lists
• Every application (a.k.a., instantiation) of this

parametric type yields a new type:

abstract class List[T] {
 def ++(ys: List[T]): List[T]
}

Note that our parametric type can be instantiated with type
parameters, including its own!

Parametric Lists

case class Empty[S]() extends List[S] {
 def ++(ys: List[S]) = ys
}

case class Cons[T](head: T, tail: List[T]) extends List[T] {
 def ++(ys: List[T]) = Cons[T](head, tail ++ ys)
}

Parametric Lists

case class Empty[S]() extends List[S] {
 def ++(ys: List[S]) = ys
}

case class Cons[T](head: T, tail: List[T]) extends List[T] {
 def ++(ys: List[T]) = Cons[T](head, tail ++ ys)
}

Our definition requires a separate type Empty[S] for
every instantiation of S. Thus we must define Empty as

a class rather than an object.

Type Environments
• To explain how to type check expressions in the

context of parametric types, we must introduce the
notion of environments

• We define a type parameter environment to hold a
collection of zero or more type parameter
declarations with their bounds

• Type environments can be extended with more
declarations

Type Checking a Class
Definition

• To type check a parametric class definition:

• Check the declarations of the class in a new type
parameter environment that extends the
enclosing environment with all its type
parameters

Type Checking a Function
Definition

• To type check a function definition in environment E:

• Check that the types of all parameters are well-
formed

• Find the type of the body of the function,
substituting occurrences of parameters with their
types

• Ensure that the type of the body is a subtype of
the declared return type (in environment E)

Well-Formedness of Types
• A type is well-formed in environment E iff:

• If it is a well-defined non-parametric type

• It is a type parameter T in environment E

• It is an instantiation of a defined parametric type and:

• All of its type arguments are well-formed types in E

• All of its type arguments respect the bounds on
their corresponding type parameters

Subtyping With
Environments

• It is non-sensical to compare types in separate type
environments:

• Is S a subtype of T?

case class Empty[S]() extends List[S] {
 def ++(ys: List[S]) = ys
}

case class Cons[T](head: T, tail: List[T]) extends List[T] {
 def ++(ys: List[T]) = Cons[T](head, tail ++ ys)
}

Subtyping With
Environments

• We must modify our subtyping rules to refer to an
environment E:

• S <: S in E

• If S <: T in E and T <: U in E then S <: U in E

Subtyping With
Environments

• If:

• class C[T1,..,TN] extends D[U1,…UM]

• and X1,…,XN are well-formed in E

• then C[X1,…XN] <: D[U1,…,UM][T1↦X1,…,TN↦XN]
in E

Subtyping With
Environments

• If:

• class C[T1,..,TN] extends D[U1,…UM]

• and X1,…,XN are well-formed in E

• then C[X1,…XN] <: D[U1,…,UM][T1↦X1,…,TN↦XN]
in E

We use this notation to indicate safe substitution of T1 for X1,
… TN for XN in D[U1,…,UM]

Covariance

• Can one instantiation of a parametric type be a
subtype of another?

• Currently our rules allow this only in the reflexive
case:

List[Int] <: List[Int] in E

Covariance
• It would be useful to allow some instantiations to be

subtypes of another

• For example, we would like it to be the case that:

List[Int] <: List[Any]

Covariance
• In general, we say that a parametric type C is

covariant with respect to its type parameter S if:

• We must be careful that such relationships do not
break the soundness of our type system

S <: T in E

implies

C[S] <: C[T] in E

Covariance
• For a parametric type such as:

• And types S and T, such that S <: T in some
environment E:

• What must we check about the body of class
List to allow for List[S] <: List[T] in E?

abstract class List[T <: Any] {
 def ++(ys: List[T]): List[T]
}

Covariance
• Consider instantiations for types String and Any:

abstract class List[Any] {
 def ++(ys: List[Any]): List[Any]
}
abstract class List[String] {
 def ++(ys: List[String]): List[String]
}

Covariance

• If these were ordinary classes connected by an
extends class:

• We would need to ensure that the overriding
definition of ++ in class List[String] was
compatible with the overridden definition in
List[Any]

Covariance

abstract class List[Any] {
 def ++(ys: List[Any]): List[Any]
}
abstract class List[String] extends List[Any] {
 def ++(ys: List[String]): List[String]
}

Covariance

abstract class List[Any] {
 def ++(ys: List[Any]): List[Any]
}
abstract class List[String] extends List[Any] {
 def ++(ys: List[String]): List[String]
}

But if List[String] <: List[Any] in E
then this is not a valid override

Covariance

abstract class List[Any] {
 def ++(ys: List[Any]): List[Any]
}
abstract class List[String] extends List[Any] {
 def ++(ys: List[String]): List[String]
}

On the other hand, the return types
are not problematic

Covariance

• From our example, we can glean the following rule:

• We allow a parametric class C to be covariant
with respect to a type parameter T so long as T
does not appear in the types of the method
parameters of C

Covariance

• We stipulate that a parametric type is covariant in a
parameter T by prefixing a + at the definition of T

• (We will return to our definition of append later)

abstract class List[+T] {}

Covariance

case object Empty extends List[Nothing] {
}

case class Cons[+T](head: T, tail: List[T])
extends List[T] {
}

Covariance

case object Empty extends List[Nothing] {
}

case class Cons[+T](head: T, tail: List[T])
extends List[T] {
}

Now we can define Empty as an object that extends the bottom of the List
types

Covariance and Append
• The problem with our original declaration of

append was that it was not general enough:

• There is no reason to require that we always
append lists of identical type

• Really, we can append a List[S] for any
supertype of our List[T]

• The result will be of type List[S]

Lower Bounds on Type
Parameters

• Thus far, we have allowed type parameters to include
upper bounds:

• They can also include lower bounds:

• Or they can include both:

T <: S

T >: U

T >: S <: U

Parametric Functions

• Just as we can add type parameters to a class
definition, we can also add them to a function
definition

• The type parameters are in scope in the header
and body of the function

Covariance and Append
abstract class List[+T] {
 def ++[S >: T](ys: List[S]): List[S]
}

case object Empty extends List[Nothing] {
 def ++[S](ys: List[S]) = ys
}

case class Cons[+T](head: T, tail: List[T])
extends List[T] {
 def ++[S >: T](ys: List[S]) = Cons(head, tail ++ ys)
}

Map Revisited

abstract class List[+T] {
 …
 def map[U](f: T => U): List[U]
}

Why is this occurrence of T acceptable?

We Consider Specific
Instantiations

abstract class List[Any] {
 …
 def map[U](f: Any => U): List[U]
}
abstract class List[String] {
 …
 def map[U](f: String => U): List[U]
}

Then List[String] is an acceptable subtype of List[Any]
provided that (String => U) >: (Any => U)

which requires that String <: Any.

Generalizing Our Rules
• In our example, type parameter T occurs as the

parameter of an arrow type:

• (String => U) >: (Any => U) in E provided:

• String <: Any in E

• U <: U in E

• So subtype List[String] <: List[Any] is
permitted

To Check Variance, We Annotate
Each Type Position With A Polarity
• Recursively descend a class definition:

• At top level, all positions are positive

• Polarity is flipped at method parameter positions

• Polarity is flipped at method type parameter
positions

• Polarity is flipped at arrow type parameter
positions

Annotating Polarity

abstract class List[+T] {
 def ++[S- >: T+](ys: List[S-]): List[S+]
 def map[U-](f: T+ => U-): List[U+]
}

We Generalize Our Rules for
Checking Variance As Follows

• Covariant type parameters (declared with +) are
allowed to occur only in positive locations

• Type parameters with no annotation are allowed
to be used in all locations

Contravariance

Contravariance
• In general, we say that a parametric type C is

contravariant with respect to its type parameter S if:

• We must be careful that such relationships do not
break the soundness of our type system

S <: T in E

implies

C[T] <: C[S] in E

Contravariance

• Syntactically, contravariant type parameter
declarations are annotated with a minus sign:

case class F[-A,+B]

To Check Variance, We Annotate
Each Type Location With A Polarity
• Recursively descend a class definition:

• At top level, all locations are positive

• Polarity is flipped at method parameter positions

• Polarity is flipped at method type parameter positions

• Polarity is flipped at arrow type parameter positions

• Polarity is flipped at positions of contravariant type
parameters

Annotating Polarity

abstract class List[+T] {
 def ++[S- >: T+](ys: List[S-]): List[S+]
 def map[U-](f: T+ => U-): List[U+]
}

We Generalize Our Rules for
Checking Variance As Follows

• Covariant type parameters (declared with +) are
allowed to occur only in positive locations

• Type parameters with no annotation are allowed
to be used in all locations

• Contravariant type parameters are allowed to
occur only in negative locations

An Example of How We Might Use
Contravariant Type Parameters

abstract class Function1[-S,+T] {
 def apply(x:S): T
}

Map Revisited

case object Empty extends List[Nothing] {
 …
 def map[U](f: Nothing => U) = Empty
}

Map Revisited
case class Cons[+T](head: T, tail: List[T])
extends List[T] {
 …
 def map[U](f: T => U) =
 Cons(f(head), tail.map(f))
}

