
This Scala notebook uses BeakerX, a Two Sigma Open Source project that enhances Jupyter.

http://beakerx.com/ (http://beakerx.com/)

In [1]: scala.util.Properties.versionMsg

The Design Recipe

Step 1: Analyze the Problem
What are the objects in the problem domain?
What data types we will use to represent them?

Step 2: Create a Contract
What are the names of our functions and their parameters?
What are the requirements of the data they consume and produce?
What is the meaning of what our program computes?

Step 3+: Iterate until Correct
Repeat the following steps until we are confident in our program’s correctness:

1. Write some tests (start with example inputs/outputs)
2. Sketch a function template
3. Define the function

Out[1]: Scala library version 2.11.12 -- Copyright 2002-2017, LAMP/EPFL

http://beakerx.com/

Example: Profit of a Movie Theater
The owner of a movie theater collected the following data:

At $5.00 per ticket, 120 people attend a performance.
Decreasing by $0.10 increases attendance by 15 people.
A performance costs $180 plus $0.04 per attendee.
Define a function to calculate the exact relationship between ticket price and profit.

Problem Statement taken from How to Design Programs (2001)

Analysis
What are the objects in the problem domain?
What data types we will use to represent them?

What types of variables are we working with?

We want to compute profit
profit is defined as revenue - cost
cost is dependent on the attendendance

So we are working with monetary values and counts of attendees.

Attendees
Counts of people are whole numbers.
Assume theaters seat less than a thousand people.
We can represent this count with an Int.

Monetary values
U.S. dollar values can be fractional (e.g., $0.10).
Can't charge monetary fractions smaller than $0.01.
Assume monetary values are less than $10 million per performance.
We can represent a monetary value in cents as an Int.

Function Contract
What is the name of the function?

What considerations should go into the names we choose?
What are the static types of the arguments that our function consumes?

What other constraints must hold on the values it consumes?
What is the static type of its result?

What else does it ensure about its result?
What is the purpose of our function?

What is a reasonable contract of the attendance function?

In [2]: def attendance(ticketPrice: Int): Int = ???

Using Scala's ??? Placeholder
??? is a built-in placeholder symbol in Scala. ??? : Int is a placeholder for an expression that will have the
static type of Int. Using the ??? placeholder allows us to write Scala code that compiles even if it's not yet fully
implemented. Evaluating ??? (either directly or indirectly) will result in a run-time error.

In [3]: ??? // directly evaluating the placeholder value

In [4]: attendance(100) // indirectly evaluating the placeholder value

Is the function signature of attendence a sufficient contract?

Preconditions
We express assertions about the input to a function, or its preconditions, using Scala's require construct.

What are the preconditions of attendance?

Postconditions
We express assertions about the result of a function, or its postconditions, using Scala's ensuring construct.

What are the postconditions of attendance?

In [5]: def attendance(ticketPrice: Int): Int = {
 require(ticketPrice >= 0)
 ??? : Int
} ensuring (result => result >= 0)

Statement of Purpose

Out[2]: attendance: (ticketPrice: Int)Int

scala.NotImplementedError: an implementation is missing
 at scala.Predef$.$qmark$qmark$qmark(Predef.scala:230)
 ... 46 elided

scala.NotImplementedError: an implementation is missing
 at scala.Predef$.$qmark$qmark$qmark(Predef.scala:230)
 at attendance(<console>:88)
 ... 46 elided

Out[5]: attendance: (ticketPrice: Int)Int

In [6]: /**
* Given a ticketPrice in cents,
* returns the number of people expected
* to attend a performance.
*/
def attendance(ticketPrice: Int): Int = {
 require(ticketPrice >= 0)
 ??? : Int
} ensuring (result => result >= 0)

Write some Tests
Note that we're writing tests before we implement the function! We want to think about how the function should
work, and write tests to assert that behavior before we are biased by the implementation. For attendance, we
should identify some interesting inputs and expected outputs based on the theater owner's provided data.

In [7]: 120 == attendance(500)

Oops! We haven't implemented attendence yet!

Apply the KISS Principle for Definitions
The KISS design principle: "Keep It Simple, Stupid"

Write the simplest solution that fits the template and passes the current tests.
Keeping the definition simple will:

1. Force us to include adequate test coverage.
2. Help to keep us from over-engineering.

In [8]: /**
* Given a ticketPrice in cents,
* returns the number of people expected
* to attend a performance.
*/
def attendance(ticketPrice: Int): Int = {
 require(ticketPrice >= 0)
120
} ensuring(result => result >= 0)

Out[6]: attendance: (ticketPrice: Int)Int

scala.NotImplementedError: an implementation is missing
 at scala.Predef$.$qmark$qmark$qmark(Predef.scala:230)
 at attendance(<console>:95)
 ... 46 elided

Out[8]: attendance: (ticketPrice: Int)Int

In [9]: 120 == attendance(500)

Yay! The test passed—all done!

Iterate until Complete
OK, we were really only done with that iteration of the design recipe.

Let's write more tests, and then update our solution to make them pass.

Iteration 2
Let's try dropping the ticket price by $0.10, which should result in the attendance increasing by 15.

In [10]: 135 == attendance(490)

In [11]: /**
* Given a ticketPrice in cents,
* returns the number of people expected
* to attend a performance
*/
def attendance(ticketPrice: Int): Int = {
 require(ticketPrice >= 0)
 120 + (500 - ticketPrice) * (15 / 10)
} ensuring(result => result >= 0)

Does our original test still work?

In [12]: 120 == attendance(500)

And the new test?

In [13]: 135 == attendance(490)

Agh! What went wrong?! Let's check the actual output.

Out[9]: true

Out[10]: false

Out[11]: attendance: (ticketPrice: Int)Int

Out[12]: true

Out[13]: false

In [14]: attendance(490)

Why didn't we get 135? Let's compute attendance(490) by hand.

120 + (500 - {490}) * (15 / 10)
↦
 120 + (10) * (15 / 10)
↦
 120 + (10) * (1) // Oops! Integer division truncates...
↦
 120 + 10
↦
 130

Let's try multiplying before dividing to avoid this error.

In [15]: /**
* Given a ticketPrice in cents,
* returns the number of people expected
* to attend a performance
*/
def attendance(ticketPrice: Int): Int = {
 require(ticketPrice >= 0)
 120 + 15 * (500 - ticketPrice) / 10
} ensuring(result => result >= 0)

Does our original test still work?

In [16]: 120 == attendance(500)

And the new test?

In [17]: 135 == attendance(490)

Out[14]: 130

Out[15]: attendance: (ticketPrice: Int)Int

Out[16]: true

Out[17]: true

Yay! Time to iterate again.

Iteration 3
If we charge too much money, let's say $10, then no one should show up.

Let's try that.

In [18]: 0 == attendance(1000)

Agh, the postcondition failed. Let's check the actual result to see why.

In [19]: 120 + 15 * (500 - {1000}) / 10

Yeah, that probably doesn't make sense. 🤦

Scala integers have a built-in max method. Let's use that to lower-bound the result.

Note: If there's a useful-looking method or operator available on an object, but we didn't discuss it in class, just
make a quick post to Piazza asking if you can use it! We usually say yes unless (1) we want you to implement it
on your own, or (2) we think that wanting that method means you're doing something more complex than
necessary.

In [20]: /**
* Given a ticketPrice in cents,
* returns the number of people expected
* to attend a performance
*/
def attendance(ticketPrice: Int): Int = {
 require(ticketPrice >= 0)
 (120 + 15 * (500 - ticketPrice) / 10).max(0)
} ensuring(result => result >= 0)

Does our original tests still work?

java.lang.AssertionError: assertion failed
 at scala.Predef$.assert(Predef.scala:156)
 at scala.Predef$Ensuring$.ensuring$extension2(Predef.scala:260)
 at attendance(<console>:96)
 ... 46 elided

Out[19]: -630

Out[20]: attendance: (ticketPrice: Int)Int

In [21]: 120 == attendance(500)

In [22]: 135 == attendance(490)

And the new test?

In [23]: 0 == attendance(1000)

Yay!

Iteration 2.1
Let's pretend that Scala didn't have a built-in max operator for integers.

The Scala language exposes all of the static methods from java.lang.Math.* in the scala.math package.
Since all members of the scala package are imported by default, we can call methods like math.abs, math.min,
and math.max directly:

In [24]: math.max(-630, 0)

However, we haven't defined anything in the math package in Core Scala. In fact, we haven't even defined
symantics of packages yet, so we probably shouldn't use that either.

Let's implement our own max function instead, just like we might do for any non-standard operation we decide to
lift into its own function.

At this point we should re-apply our design recipe to this sub-problem.

Analyze

We want to use our max function on integers, so the signature should be (Int, Int)=>Int.

In [25]: def max(x: Int, y: Int): Int = ???

Out[21]: true

Out[22]: true

Out[23]: true

Out[24]: 0

Out[25]: max: (x: Int, y: Int)Int

It might also make sense to enforce that the result is one of the inputs.

We should also add our purpose statement as a comment.

In [26]: /** Compute the maximum of two integers */
def max(x: Int, y: Int): Int = {
 ??? : Int
} ensuring(result => result == x | result == y)

Write a Test

Let's start with the max(-630, 0) case we already had above.

In [27]: 0 == max(-630, 0)

Update the Definition

Don't go too overboard with the KISS principle. We know how max should work, and there's no need to iterate on
obviously broken implementations like the followng:

In [28]: def max(x: Int, y: Int) = y

In [29]: 0 == max(-630, 0)

Let's use an if expression to check which input is larger, and return that one.

In [30]: /** Compute the maximum of two integers */
def max(x: Int, y: Int): Int = {
 if (x > y) x else y
} ensuring(result => result == x | result == y)

In [31]: 0 == max(-630, 0)

Out[26]: max: (x: Int, y: Int)Int

scala.NotImplementedError: an implementation is missing
 at scala.Predef$.$qmark$qmark$qmark(Predef.scala:230)
 at max(<console>:90)
 ... 46 elided

Out[28]: max: (x: Int, y: Int)Int

Out[29]: true

Out[30]: max: (x: Int, y: Int)Int

Out[31]: true

Yay! Now we have our own Core Scala max function!

Iterate

We should iterate on the design recipe and add some more test cases...

In [32]: 2 == max(1, 2)

In [33]: Int.MaxValue == max(Int.MaxValue, 0)

In [34]: Int.MinValue == max(Int.MinValue, Int.MinValue)

I'm reasonably confident this is working.

If we were dealing with Doubles rather than Ints I'd be more worried.

Notice that the actual math.max method works for Doubles, and can handle ±0.0:

In [35]: math.max(-0.0, +0.0)

In [36]: math.max(-0.0, -0.0)

In [37]: math.max(+0.0, -0.0)

Sorry for the tangent—let's get back to attendance.

Iteration 3
Let's add some more tests. Maybe some edge cases.

In [38]: 0 == attendance(Int.MaxValue)

Out[32]: true

Out[33]: true

Out[34]: true

Out[35]: 0.0

Out[36]: -0.0

Out[37]: 0.0

Out[38]: true

That worked! But maybe it shouldn't have...

attendance(Int.MaxValue)
↦
attendance(2147483647)
↦
max(0, 120 + 15 * (500 - 2147483647) / 10) // subtraction overflow!
↦
max(0, 120 + 15 * (-2147483147) / 10) // multiplication overflow!
↦
max(0, 120 + -2147476133 / 10)
↦
max(0, 120 + -214747613)
↦
max(0, -2147476013)
↦
if (0 >= -2147476013) 0 else -2147476013
↦
if (true) 0 else -2147476013
↦
0

Bounding Values Based on Domain Knowledge

We can find appropriate bounds for values by considering the range of those values required by our problem
domain. Often, these bounds will be much tighter than those of a generic Int or Double.

In our example, we can see from our formula that attendance is zero whenever the cost of a ticket is $5.80 or
above. We can also see that even free tickets achieve attendance of only 870 people And it is likely that our
theater cannot seat 870 people!

Maybe it would make more sense to update our attendance contract to further restrict the reasonable values of
ticketPrice.

In [39]: /**
* Given a ticketPrice in cents,
* returns the number of people expected
* to attend a performance.
* Undefined for ticket prices over 1000 cents.
*/
def attendance(ticketPrice: Int): Int = {
 require(0 <= ticketPrice & ticketPrice <= 1000)
 (120 + 15 * (500 - ticketPrice) / 10).max(0)
} ensuring(result => result >= 0)

Out[39]: attendance: (ticketPrice: Int)Int

Now our Int.MaxValue input should be rejected:

In [40]: 0 == attendance(Int.MaxValue)

But do the rest of our tests still work?

In [41]: 120 == attendance(500)

In [42]: 135 == attendance(490)

In [43]: 0 == attendance(1000)

Great! Let's add more.

In [44]: 0 == attendance(580)

In [45]: 2 == attendance(579)

In [46]: 870 == attendance(0)

At this point I'm probably pretty confident that attendance works.

java.lang.IllegalArgumentException: requirement failed
 at scala.Predef$.require(Predef.scala:212)
 at attendance(<console>:95)
 ... 46 elided

Out[41]: true

Out[42]: true

Out[43]: true

Out[44]: true

Out[45]: true

Out[46]: true

Keep Applying the Design Recipe
Now we continue applying the design recipe to build a function that solves the next piece of our overall problem.
In this case, defining a cost function would make sense.

Cost
Applying the design recipe for cost might yield the following tests and definition:

In [47]: /**
* Returns cost to the theater of showing a film,
* as a function of ticketPrice.
*/
def cost(ticketPrice: Int) = {
 require(0 <= ticketPrice & ticketPrice <= 1000)
 18000 + 4 * attendance(ticketPrice)
} ensuring(result => result > 0)

In [48]: 18420 == cost(510)

In [49]: 21480 == cost(0)

In [50]: 18000 == cost(1000)

Revenue

In [51]: /**
* Returns revenue received by the theater when
* showing a film, as a function of ticket price.
*/
def revenue(ticketPrice: Int) = {
 require(0 <= ticketPrice & ticketPrice <= 1000)
 ticketPrice * attendance(ticketPrice)
} ensuring(result => result >= 0)

In [52]: 0 == revenue(0)

Out[47]: cost: (ticketPrice: Int)Int

Out[48]: true

Out[49]: true

Out[50]: true

Out[51]: revenue: (ticketPrice: Int)Int

Out[52]: true

In [53]: 0 == revenue(1000)

In [54]: 53550 == revenue(510)

Profit

In [55]: /**
* Returns profit enjoyed by the theater after showing
* a film, defined as the difference between revenue
* costs.
*/
def profit(ticketPrice: Int) = {
 require(0 <= ticketPrice & ticketPrice <= 1000)
 revenue(ticketPrice) - cost(ticketPrice)
}

In [56]: 35130 == profit(510)

In [57]: -21480 == profit(0)

In [58]: -18000 == profit(1000)

Would it make sense to add an ensuring clause to profit?

All Together

Out[53]: true

Out[54]: true

Out[55]: profit: (ticketPrice: Int)Int

Out[56]: true

Out[57]: true

Out[58]: true

In [59]: /** Compute the maximum of two integers */
def max(x: Int, y: Int): Int = {
 if (x > y) x else y
} ensuring(result => result == x | result == y)

/**
* Given a ticketPrice in cents,
* returns the number of people expected
* to attend a performance.
* Undefined for ticket prices over 1000 cents.
*/
def attendance(ticketPrice: Int): Int = {
 require(0 <= ticketPrice & ticketPrice <= 1000)
 (120 + 15 * (500 - ticketPrice) / 10).max(0)
} ensuring(result => result >= 0)

/**
* Returns cost to the theater of showing a film,
* as a function of ticketPrice.
*/
def cost(ticketPrice: Int) = {
 require(0 <= ticketPrice & ticketPrice <= 1000)
 18000 + 4 * attendance(ticketPrice)
} ensuring(result => result > 0)

/**
* Returns revenue received by the theater when
* showing a film, as a function of ticket price.
*/
def revenue(ticketPrice: Int) = {
 require(0 <= ticketPrice & ticketPrice <= 1000)
 ticketPrice * attendance(ticketPrice)
} ensuring(result => result >= 0)

/**
* Returns profit enjoyed by the theater after showing
* a film, defined as the difference between revenue
* costs.
*/
def profit(ticketPrice: Int) = {
 require(0 <= ticketPrice & ticketPrice <= 1000)
 revenue(ticketPrice) - cost(ticketPrice)
}

Note that we can inline all of this logic into the profit function (excluding max to avoid too much repeated code):

Out[59]: max: (x: Int, y: Int)Int
attendance: (ticketPrice: Int)Int
cost: (ticketPrice: Int)Int
revenue: (ticketPrice: Int)Int
profit: (ticketPrice: Int)Int

In [60]: def profit(ticketPrice: Int) = {
 require(0 <= ticketPrice & ticketPrice <= 1000)
 ticketPrice * max(0, 120 + 15 * (500 - ticketPrice) / 10) -
 18000 + 4 * max(0, 120 + 15 * (500 - ticketPrice) / 10)
}

Which version would you rather have when you need to adjust the numbers 5 years later due to inflation?

How Many Functions Do I Need?
As a guideline:

Include a helper function for each of the dependencies mentioned in your problem statement.
Include a helper function for new dependencies discovered during testing.

Out[60]: profit: (ticketPrice: Int)Int

