Worksheet: Parallelizing the Split step in Radix Sort

The Radix Sort algorithm loops over the bits in the binary
representation of the keys, starting at the lowest bit, and executes
a split operation for each bit as shown below. The split operation
packs the keys with a 0 in the corresponding bit to the front of a
vector, and packs the keys with a 1 to the end of the same vector.
It maintains the order within both groups.

The sort works because each split operation sorts the keys with

respect to the current bit and maintains the sorted order of all the
lower bits. Your task is to show how the split operation (complete
I-down) can be performed in parallel

[101 111 O11 001 100 010 111 O10]

1.A = [5
2.A(0) = [1
3.A«split(A,A(0)) = [4
4.A(1) = [0
5.A«split (A,A(1l)) = [4
6.A(2) = [1
7.Aesplit(A,A(2)) = [1

7

N = Ul = N =

3

N OKKNEMR

1

W ONOU =

4

B O DN K= 30

2

Ul = = WO
N O WO R

7

2]

0] //lowest bit
7]

1] // middle bit
7]

1] // highest bit
7]

COMP 322, Spring 2024 (M. Joyner)

procedure split(A, Flags)
I-down <«—
I-up <« rev(n-scan(+, rev(Flags))/ rev = reverse
in parallel for each index i
if (Flagsli])
Index|i] <« I-upli]
else
Index[i] <+ I-downli]
result <« permute(A, Index)

A - (5 7 3 1 4 2 17 2]
Flags = [1 1 1 1 0o o0 1 0
I-down - [0 0o o o [0 [2 [
T-up - (B @ B B 6 6 [7]
Index - [3 4 5 6 0 1 7 2
permute(A, Index) = [4 2 2 5 7 3 1 7]

FIGURE 1.9

The split operation packs the elements with a 0 in the corresponding flag
position to the bottom of a vector, and packs the elements with a 1 to the
top of the same vector. The permute writes each element of A to the index
specified by the corresponding position in Index.

