
COMP 322: Parallel and Concurrent Programming

Lecture 1: Welcome to COMP 322!

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 1 08 January 2024

http://comp322.rice.edu

COMP 322, Spring 2024 (M. Joyner)

Acknowledgments

2

Vivek Sarkar
Zoran Budimlić
Dan Wallach
Shams Imam

COMP 322, Spring 2024 (M. Joyner)

Your Teaching Staff!

• TAs
—Stefan Boskovic, Haotian Dang, Andrew Ondara, Huzaifa Ali, Raahim Absar

• Instructor
—Mack Joyner (mjoyner@rice.edu)

3

mailto:mjoyner@rice.edu

COMP 322, Spring 2024 (M. Joyner)

Office Hours

•Regular office hour schedule can be found at Office Hours link on course web
site

•Send email to instructor (mjoyner@rice.edu) or TAs if you need to meet some
other time

•Use Piazza to post and answer questions

4

https://wiki.rice.edu/confluence/display/PARPROG/322OfficeHours
mailto:mjoyner@rice.edu?subject=
https://piazza.com/rice/spring2023/comp322

COMP 322, Spring 2024 (M. Joyner)

Course Syllabus

•Fundamentals of Parallel and Concurrent Programming taught in six topics
1.Functional Programming Fundamentals (2 weeks)
2.Creating Parallel and Concurrent Programs using Functional Concepts (4 weeks)
3.Fundamentals of Shared-Memory Concurrent Programming (3 weeks)
4.Data Parallel Programming Model and Loop Parallelism and Concurrency (2 ⅔ weeks)
5.Message-Passing Programming Model (1 ⅓ week)
6.Miscellaneous Topics (1 week)

•Labs and programming assignments will be in Java 11
•Habanero-Java (HJ) library developed at Rice as a pedagogic parallel programming model

• Only used as a uniform way to illustrate the concepts
• We will relate concepts to other languages and frameworks

5

COMP 322, Spring 2024 (M. Joyner)

Grade Policies
Course Rubric
• Homework (5) 40% (written + programming components)

•Weightage proportional to # weeks for homework
• Exams (2) 40% (scheduled midterm + scheduled final)
• Weekly Labs 10% (labs need to be submitted by the following Monday)
• Quizzes 5% (on-line quizzes on Canvas)
• Class Participation 5% (in-class worksheets)

6

COMP 322, Spring 2024 (M. Joyner)

Parallelism and Concurrency are Everywhere

7

COMP 322, Spring 2024 (M. Joyner)

What is Parallel Computing
•Parallel computing: using multiple processors in parallel to solve problems quicker than with a single

processor and/or with less energy

8

•Example of a parallel computer: Apple M1 MAX
•10-core Multi-Processor
•8 performance cores
•2 high-efficiency cores

•32 GPU cores
•16 neural engine cores
•Unified memory on-chip (up to 64GB)
•57 billion transistors

COMP 322, Spring 2024 (M. Joyner)

Why?

9

Gordon Moore (co-founder of Intel) predicted in 1965
that the transistor density of semiconductor chips would
double roughly every 1-2 years (Moore’s Law)

• area of a transistor halves every 1-2 years
• feature size reduces by √2 every 1-2 years

COMP 322, Spring 2024 (M. Joyner)

Parallelism Saves Power (Simplified Analysis)
Maximum Frequency is capped by Voltage
 Power is proportional to (Frequency)3

Baseline example: single 1GHz core with power P

Option A: Increase clock frequency to 2GHz -> Power = 8P

Option B: Use 2 cores at 1 GHz each -> Power = 2P

• Option B could deliver the same performance as Option A with 4x less power …
provided your software runs in parallel!

10

COMP 322, Spring 2024 (M. Joyner)

What is Parallel Programming

• Specification of operations that can be executed in parallel
• A parallel program is decomposed into sequential subcomputations
• Threads, Jobs, Processes, Tasks
•Parallel programming constructs define the semantics of task

creation, termination, location and interaction

11

BUS

Core 0 Core 1

L1 cache L1 cache

L2 Cache

Schematic of a dual-core
Processor

	

Task A Task B

COMP 322, Spring 2024 (M. Joyner)

What is Concurrent Programming

• Programming technique
• An application making progress on

two or more tasks at the same time
• Execute and complete in an

overlapping time period
• Manage access to shared resources

12

COMP 322, Spring 2024 (M. Joyner)

Concurrent vs. Parallel Programming
• “Things happening at the same time”
• Parallel Programming: Improve performance
• Concurrent Programming: Solve a problem by using concurrently executing tasks

and managing shared resources
• Example: 200 COMP 322 students, one final exam with 10 questions
• Parallelism without Concurrency

• 10 TAs, each TA grades 20 complete exams
• Concurrency without Parallelism

• 1 TA, the TA grades question 1 first for all exams, then question 2, and so on …
• Concurrency and Parallelism

• 10 TAs, each TA grades a separate question

13

COMP 322, Spring 2024 (M. Joyner)

Example Problem: Computing the sum of array elements

14

COMP 322

Spring 2015

COMP 322: Fundamentals of Parallel Programming

Module 1: Parallelism

0 Introduction

0.1 What is Parallel Programming?

Since the dawn of early digital computers and the Von Neumann computing model [6]1, programming
has been viewed as a sequential abstraction of computation. Sequential programming is a step-by-step
specification of each operation in a computation as a sequence — a program is a sequence of statements,
a loop is a sequence of iterations, an expression is a sequence of operations, and so on. The sequential
programming model has served the computing industry well for over six decades as the default model
for the vast majority of programming languages. Sequential programming has also simplified reasoning
about program execution because a sequential program always performs its operations in a predefined order.
However, in many respects, sequential programming can be considered “unnatural” because many application
domains modeled by software (e.g., physical systems, social networks) are inherently parallel rather than
sequential.

The concept of parallelism is often used to denote multiple events occurring side-by-side in space and time. In
Computer Science, we use it to denote simultaneous computation of operations on multiple processing units.
Thus, parallel programming is a specification of operations in a computation that can be executed in parallel
on di↵erent processing units. This course will focus on the fundamental concepts that underlie parallel
programming so as to provide you with the foundations needed to understand any parallel programming
model that you encounter in the future.

To introduce you to a concrete example of parallel programming, let us first consider the following sequential
algorithm for computing the sum of the elements of an array of numbers, X:

Algorithm 1: Sequential ArraySum

Input: Array of numbers, X.

Output: sum = sum of elements in array X.

sum 0;

for i 0 to X.length� 1 do

sum sum+X[i];

return sum;

This algorithm is simple to understand since it sums the elements of X sequentially from left to right.
However, we could have obtained the same algebraic result by summing the elements from right to left
instead. This over-specification of the ordering of operations in sequential programs has been classically
referred to as the Von Neumann bottleneck [1]. The left-to-right evaluation order in Algorithm 1 can be
seen in the computation graph shown in Figure 1. We will study computation graphs formally later in the
course. For now, think of each node or vertex (denoted by a circle) as an operation in the program and each
edge (denoted by an arrow) as an ordering constraint between the operations that it connects, due to the
flow of the output from the first operation to the input of the second operation. It is easy to see that the
computation graph in Figure 1 is sequential because the edges enforce a linear order among all nodes in the
graph.

How can we go about converting Algorithm 1 to a parallel program? The answer depends on the parallel
programming constructs that are available for our use. Let’s use the word, task, to denote a sequential
subcomputation of a parallel program. A task can be made as small or as large as needed. We can think
of the start of program execution as a single root task. We now informally introduce two constructs, async
and finish2:

• The statement “async hstmt1i” causes the parent task to create a new child task to execute the body of

1
These lecture notes include citation such as [6] as references for optional further reading.

2
These constructs have some similarities to the “fork” and “join” constructs available in many languages, but there are

notable di↵erences as well, as you will learn later in the course.

2 of 13

Observations:

• The decision to sum up the elements from left to right was
arbitrary

• The computation graph shows that all operations must be
executed sequentially

COMP 322, Spring 2024 (M. Joyner)

Two-way Parallel Array Sum

Basic idea:
• Decompose problem into two tasks for partial sums (parallelism)
• Combine results to obtain final answer after partial sums are done

(concurrency)
• This is a parallel divide-and-conquer pattern

15

Task 1: Compute sum of the upper halfTask 0: Compute sum of the lower half

Task 2: Compute total sum

Parallelism!

Concurrency!

