
COMP 322: Parallel and Concurrent Programming

Lecture 5: Streams

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 5 19 January 2024

http://comp322.rice.edu

COMP 322, Spring 2024 (M. Joyner)

Lazy lists
class LazyCons<T> implements LazyList<T> {
 final T head;
 final Lazy<LazyList<T>> tail;

 LazyCons(T head, Supplier<LazyList<T>> tail) {
 this.head = head;
 this.tail = Lazy.of(tail);
 }

 public T head() {
 return head;
 }

 public LazyList<T> tail() {
 return tail.get();
 }

2

a lambda that will return the tail

Build a memo around the tail supplier so
that we only call the lambda once

tail() hides the implementation details

COMP 322, Spring 2024 (M. Joyner)

From laziness to parallelism: Java Streams

3

Generalizing the laziness concept to arbitrary collections of objects
Idea:

• Take a bunch of objects

• Turn them into a Stream (a lazy representation)

• Perform a series of lazy operations on them (all running in constant time)

• Eventually, compute the final result of your computation, which triggers evaluation of
only of those lazy operations necessary to compute your result

Operations on Java Streams can be executed in parallel!!!

COMP 322, Spring 2024 (M. Joyner)

Creating Streams

4

Empty Stream:
Stream<String> streamEmpty = Stream.empty();

Stream from a collection:
Collection<String> collection = Arrays.asList("a", "b", "c");
Stream<String> streamOfCollection = collection.stream();

Stream from an array:
Stream<String> streamOfArray = Stream.of("a", "b", "c");
String[] arr = new String[]{"a", "b", "c"};
Stream<String> streamOfArrayFull = Arrays.stream(arr);
Stream<String> streamOfArrayPart = Arrays.stream(arr, 1, 3);

COMP 322, Spring 2024 (M. Joyner)

Creating infinite Streams

5

Using Stream.generate(). Infinite Stream of strings “element”:
Stream<String> streamGenerated = Stream.generate(() -> “element");

Using Stream.iterate(). Infinite Stream of even Integers, starting with 40:
var streamIterated = Stream.iterate(40, n -> n + 2); // Stream<Integer>

Take a finite number of elements from an infinite stream. Just like our LazyList take():
var tenStrings = streamGenerated.limit(10); // Stream<String>. Runs in constant time

var fiveInts = streamIterated.limit(5); // Stream<Integer>. Runs in constant time

Still lazy!

COMP 322, Spring 2024 (M. Joyner)

Streams of primitive types

6

Stream<T> cannot be used for primitive types

Instead, use IntStream, LongStream and DoubleStream for streams of ints, longs and
doubles

IntStream intStream = IntStream.range(1, 3); // IntStream of (1, 2)
LongStream longStream = LongStream.rangeClosed(1, 3); // LongStream of (1, 2, 3)

Using Random:

Random random = new Random();
DoubleStream doubleStream = random.doubles(); // Infinite DoubleStream of random double numbers
var fiveIntsStream = random.ints(5); // IntStream of five random int numbers
var alsoFiveIntsStream = random.ints().limit(5);// IntStream of five random int numbers

COMP 322, Spring 2024 (M. Joyner)

Stream pipeline

7

List<String> list = Arrays.asList("Rice", "Owls", "are", "the", "best");
long size =
 list.stream()
 .skip(1)
 .map(element -> element.substring(0, 3))
 .filter(element -> element.charAt(2) == 'e')
 .sorted()
 .count();

Stream source

}
Terminal operation

Intermediate operations
All lazy!

COMP 322, Spring 2024 (M. Joyner)

Intermediate operations. Lazy!

8

filter(p)

map(f)

flatMap(f)

distinct()

sorted(c)

peek(a)

limit(n)

skip(n)

Keep only elements satisfying the given Predicate p

Apply the given function f to all elements

Like map, but when result of f is a stream. Final result is flattened

Unique elements of the stream (w.r.t. Object.equals(Object))

Elements of the stream, sorted according to Comparator c

Perform the Consumer action a on all elements, return original Stream

Take first n elements

Discard the first n elements

COMP 322, Spring 2024 (M. Joyner)

Intermediate operations are lazy

9

What will this print?

List<String> list = Arrays.asList("Rice", "Owls", "are", "the", "best");
Stream<String> stream =
 list.stream()
 .filter(e -> {
 System.out.println("Predicate was called on " + e);
 return e.contains("e");});

Nothing!

All of these are just special cases of reduce()!

reduce(zero, f)

toArray()

collect()

count()

forEach(a)

forEachOrdered(a)

min(c), max(c)

(any)(all)(none)Match(p)

findFirst()

findAny()

Just like our fold. Start with accumulator zero, apply f to all the elements of the stream

Produce an array from elements of the result Stream

Collect the elements of the result Stream into an object (usually a Java Collection)

Counts the elements in the result Stream

Perform Consumer action a on all elements

Same as forEach, but in order of the stream, if ordered (i.e. with sorted())

Minimum/maximum element, according to the Comparator c

True if any/all/none elements of the stream match Predicate p

Pick the first element of the result stream

Pick any element of the result stream

COMP 322, Spring 2024 (M. Joyner)

Terminal operations. Drive the computation!

10

COMP 322, Spring 2024 (M. Joyner)

Computation is driven by terminal operations

11

List<String> list = Arrays.asList("Rice", "Owls", "are", "the", "best");
Optional<String> value =
 list.stream()
 .filter(e -> {
 System.out.println("Filter was called on " + e);
 return e.contains("s");})
 .map(e -> {
 System.out.println("Map was called on " + e);
 return e.toUpperCase();})
 .findFirst();
System.out.println(value.get());

Filter was called on Rice
Filter was called on Owls
Map was called on Owls
OWLS

COMP 322, Spring 2024 (M. Joyner)

Ordering matters

12

List<String> list =
 Arrays.asList("Rice", "Owls", "are", "the", "best");
Optional<String> value =
 list.stream()
 .filter(e -> {
 System.out.println("Filter was called on " + e);
 return e.contains("s");})
 .map(e -> {
 System.out.println("Map was called on " + e);
 return e.toUpperCase();})
 .findFirst();
System.out.println(value.get());

Filter was called on Rice
Filter was called on Owls
Map was called on Owls
OWLS

List<String> list =
 Arrays.asList("Rice", "Owls", "are", "the", "best");
Optional<String> value =
 list.stream()
 .map(e -> {
 System.out.println("Map was called on " + e);
 return e.toUpperCase();})
 .filter(e -> {
 System.out.println("Filter was called on " + e);
 return e.contains(“S");})
 .findFirst();
System.out.println(value.get());

Map was called on Rice
Filter was called on RICE
Map was called on Owls
Filter was called on OWLS
OWLS

COMP 322, Spring 2024 (M. Joyner)

Parallel Streams!

13

List<String> list = Arrays.asList("Rice", "Owls", "are", "the", "best");
Optional<String> value =
 list.stream().parallel()
 .filter(e -> {
 System.out.println("Filter was called on " + e);
 return e.contains("s");})
 .map(e -> {
 System.out.println("Map was called on " + e);
 return e.toUpperCase();})
 .findFirst();
System.out.println(value.get());

Filter was called on are
Filter was called on Owls
Map was called on Owls
Filter was called on Rice
Filter was called on the
OWLS

Filter was called on are
Filter was called on Owls
Map was called on Owls
Filter was called on Rice
OWLS

Filter was called on are
Filter was called on Owls
Filter was called on best
Filter was called on Rice
Map was called on Owls
Filter was called on the
Map was called on best
OWLS

COMP 322, Spring 2024 (M. Joyner)

Parallel Streams

14

Stream.parallel(): convert a sequential Stream into a parallel one
• Changes the mode of execution of lazy operations (literally just sets a flag in Stream)

• Java may perform the intermediate and terminal operations on it in parallel

• No guarantee of parallel execution, nor the amount of parallelism

• No ordering on operations on elements can be assumed

• If your source is a Collection, you can use Collection.parallelStream() instead

Stream.sequential(): convert a parallel Stream into a sequential one
• Changes the mode of execution to sequential

COMP 322, Spring 2024 (M. Joyner)

Reductions (Stream<T>)

15

Optional<T> reduce(BinaryOperator<T> accumulator)

• Works when the elements of the stream and the result of the reduction are of the same type

• accumulator needs to be associative, stateless, non-interfering (does not modify the source of the stream)

• Result is empty if the stream has no elements

T reduce(T identity, BinaryOperator<T> accumulator);

• Elements of stream and the result of same type, accumulator is associative, stateless and non-interfering

• identity should be the real identity element for the accumulator (strange results when running in parallel otherwise)

COMP 322, Spring 2024 (M. Joyner)

General Form Reduction (Stream<T>)

16

<U> U reduce(U identity, BiFunction<U, ? super T, U> accumulator, BinaryOperator<U> combiner);

• General form, works when the result of the reduction is of a different type than the elements of the stream

• combiner should be able to combine results of two partial reductions into one

• combiner and accumulator should be associative, stateless, non-interfering

• identity should be the real identity element for the combiner (strange results when running in parallel otherwise)

COMP 322, Spring 2024 (M. Joyner)

Always use the real identity

17

String seqString =
 Stream.of("Rice ", "Owls ", "are ", "the ", "best")
 .reduce("HI ", String::concat, (a, b) -> {
 System.out.println("Sequential combiner was called");
 return a.concat(b);
 });
String parString =
 Arrays.asList("Rice ", "Owls ", "are ", "the ", "best").parallelStream()
 .reduce("HI ", String::concat, (a, b) -> {
 System.out.println("Parallel combiner was called");
 return a.concat(b);
 });
System.out.println("Sequential result: " + seqString);
System.out.println("Parallel result: " + parString); Parallel combiner was called

Parallel combiner was called
Parallel combiner was called
Parallel combiner was called
Sequential result: HI Rice Owls are the best
Parallel result: HI Rice HI Owls HI are HI the HI best

COMP 322, Spring 2024 (M. Joyner)

Always use the real identity

18

String seqString = "HI " +
 Stream.of("Rice ", "Owls ", "are ", "the ", "best")
 .reduce("", String::concat, (a, b) -> {
 System.out.println("Sequential combiner was called");
 return a.concat(b);
 });
String parString = "HI " +
 Arrays.asList("Rice ", "Owls ", "are ", "the ", "best").parallelStream()
 .reduce("", String::concat, (a, b) -> {
 System.out.println("Parallel combiner was called");
 return a.concat(b);
 });
System.out.println("Sequential result: " + seqString);
System.out.println("Parallel result: " + parString); Parallel combiner was called

Parallel combiner was called
Parallel combiner was called
Parallel combiner was called
Sequential result: HI Rice Owls are the best
Parallel result: HI Rice Owls are the best

COMP 322, Spring 2024 (M. Joyner)

Collecting (Stream<T>)

19

Sometimes, you don’t want to produce a single value, but a new Collection instead

Java Streams give you a convenient way:
<R, A> R collect(Collector<? super T, A, R> collector);

• T is the type of elements in the reduction

•A is the accumulator (often hidden)

•R is the result type of the reduction

• Java Collectors class has quite a few handy methods for creating Collectors

List<String> asList = stringStream.collect(Collectors.toList()); // Accumulate strings into a list

int totalLength = stringStream.collect(Collectors.summingInt(String::length)); // Compute sum of length of strings

Map<Integer, List<String>> = stringStream.collect(Collectors.groupingBy(String::length)); // Group strings by string length

// Compute sum of length for all strings of the same length
Map<Integer, Integer>> = stringStream.collect(Collectors.groupingBy(String::length, Collectors.summingInt(String::length)));

COMP 322, Spring 2024 (M. Joyner)

General guidelines

20

Try to put the operations that reduce the size of the stream early
• skip(), filter(), distinct(), limit()

• May reduce the amount of work for later operations

Lambdas passed to both the intermediate and terminal operations should be pure
• No side-effects, no IO

• No modifying of the underlying source

Construct your Stream pipelines so that the partitioning and ordering of the
reductions and collections doesn’t matter

• Always use the real identity in reductions and collections

• Simple parallel() mode switch will trigger parallel execution, with the exact same answer

COMP 322, Spring 2024 (M. Joyner)

Summary
Java Streams are a mechanism to create lazy sequences of operations on
collections of objects
Typically used by constructing a Stream pipeline:

• Create a stream from a source (such as a Collection)

• Perform a bunch of intermediate operations (all lazy!)

• Perform a terminal operation to drive the computation of the result

Streams are easily parallelized!
• Just be careful with lambdas and reductions

21

