
COMP 322: Fundamentals of Parallel Programming

Lecture 8: Finish, Async, Computation Graphs

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 8 January 2024

http://comp322.rice.edu

COMP 322, Spring 2024 (M.Joyner)

Homework #1 Hints

• sorted operation on streams results in ascending order. To sort in descending
order, use sorted(Comparator.reverseOrder()).

• groupingBy, convert elements of stream into type you want by passing
Collectors.mapping(map-function, downstream-collector) as an additional
argument. For parallel streams use groupingByConcurrent.

•

2

Acknowledgement: Chase Hartsell

COMP 322, Spring 2024 (M.Joyner)

Async and Finish Statements for Task Creation and Termination
async S

• Creates a new child task
that executes statement S

3

finish S
 Execute S, but wait until

all asyncs in S’s scope
have terminated.

// T0(Parent task)
STMT0;
finish { //Begin finish
 async {
 STMT1; //T1(Child task)
 }
 STMT2; //Continue in T0

} //End finish (wait for T1)
STMT3; //Continue in T0

STMT2

fork

STMT1

join

T1 T0

STMT3

STMT0

COMP 322, Spring 2024 (M.Joyner)

Example of a Sequential Program: Computing sum of array elements

4

COMP 322

Spring 2015

COMP 322: Fundamentals of Parallel Programming

Module 1: Parallelism

0 Introduction

0.1 What is Parallel Programming?

Since the dawn of early digital computers and the Von Neumann computing model [6]1, programming
has been viewed as a sequential abstraction of computation. Sequential programming is a step-by-step
specification of each operation in a computation as a sequence — a program is a sequence of statements,
a loop is a sequence of iterations, an expression is a sequence of operations, and so on. The sequential
programming model has served the computing industry well for over six decades as the default model
for the vast majority of programming languages. Sequential programming has also simplified reasoning
about program execution because a sequential program always performs its operations in a predefined order.
However, in many respects, sequential programming can be considered “unnatural” because many application
domains modeled by software (e.g., physical systems, social networks) are inherently parallel rather than
sequential.

The concept of parallelism is often used to denote multiple events occurring side-by-side in space and time. In
Computer Science, we use it to denote simultaneous computation of operations on multiple processing units.
Thus, parallel programming is a specification of operations in a computation that can be executed in parallel
on di↵erent processing units. This course will focus on the fundamental concepts that underlie parallel
programming so as to provide you with the foundations needed to understand any parallel programming
model that you encounter in the future.

To introduce you to a concrete example of parallel programming, let us first consider the following sequential
algorithm for computing the sum of the elements of an array of numbers, X:

Algorithm 1: Sequential ArraySum

Input: Array of numbers, X.

Output: sum = sum of elements in array X.

sum 0;

for i 0 to X.length� 1 do

sum sum+X[i];

return sum;

This algorithm is simple to understand since it sums the elements of X sequentially from left to right.
However, we could have obtained the same algebraic result by summing the elements from right to left
instead. This over-specification of the ordering of operations in sequential programs has been classically
referred to as the Von Neumann bottleneck [1]. The left-to-right evaluation order in Algorithm 1 can be
seen in the computation graph shown in Figure 1. We will study computation graphs formally later in the
course. For now, think of each node or vertex (denoted by a circle) as an operation in the program and each
edge (denoted by an arrow) as an ordering constraint between the operations that it connects, due to the
flow of the output from the first operation to the input of the second operation. It is easy to see that the
computation graph in Figure 1 is sequential because the edges enforce a linear order among all nodes in the
graph.

How can we go about converting Algorithm 1 to a parallel program? The answer depends on the parallel
programming constructs that are available for our use. Let’s use the word, task, to denote a sequential
subcomputation of a parallel program. A task can be made as small or as large as needed. We can think
of the start of program execution as a single root task. We now informally introduce two constructs, async
and finish2:

• The statement “async hstmt1i” causes the parent task to create a new child task to execute the body of

1
These lecture notes include citation such as [6] as references for optional further reading.

2
These constructs have some similarities to the “fork” and “join” constructs available in many languages, but there are

notable di↵erences as well, as you will learn later in the course.

2 of 13

COMP 322, Spring 2024 (M.Joyner)

Parallelization Strategy for 2 cores (Two-way Parallel Array Sum)

Basic idea:
•Decompose problem into two tasks for partial sums
•Combine results to obtain final answer
• Parallel divide-and-conquer pattern

Task 0: Compute sum
of lower half of array

Task 1: Compute sum
of upper half of array

+"

5

Compute total sum

COMP 322, Spring 2024 (M.Joyner)

Two-way Parallel Array Sum using async & finish constructs

6

COMP 322

Spring 2015

COMP 322: Fundamentals of Parallel Programming

Module 1: Parallelism

+
+

+

X[0]

X[1]

X[2]

…

0

Figure 1: Computation graph for Algorithm 1 (Sequential ArraySum)

the async, hstmt1i, asynchronously (i.e., before, after, or in parallel) with the remainder of the parent
task.

• The statement “finish hstmt2i” causes the parent task to execute the body of the finish, hstmt2i, and
then wait until all async tasks created within hstmt2i have completed.

The notation, hstmti, refers to any legal program statement e.g., if-then-else, for-loop, method call, or a block
enclosed in { } braces. Async and finish statements may be arbitrarily nested, so they can be contained in
hstmti too. (The use of angle brackets in “hstmti” follows a standard notational convention to denote units of
a program. They are unrelated to the < and > comparison operators used in many programming languages.)

We can use async and finish to obtain a simple parallel program for computing an array sum as shown in
Algorithm 2. The graph structure for Algorithm 2 is shown in Figure 2. Note that it di↵ers from Figure 1
since there is no edge or sequence of edges connecting Tasks T2 and T3. This indicates that tasks T2 and T3
can execute in parallel with each other; for example, if your computer has two processor cores, T2 and T3
can be executed on two di↵erent processors at the same time. We will see much richer examples of parallel
programs using async, finish and other constructs during the course.

Algorithm 2: Two-way Parallel ArraySum

Input: Array of numbers, X.

Output: sum = sum of elements in array X.

// Start of Task T1 (main program)
sum1 0; sum2 0;

// Compute sum1 (lower half) and sum2 (upper half) in parallel.
finish{

async{
// Task T2
for i 0 to X.length/2� 1 do

sum1 sum1 +X[i];

};
async{

// Task T3
for i X.length/2 to X.length� 1 do

sum2 sum2 +X[i];

};
};
// Task T1 waits for Tasks T2 and T3 to complete
// Continuation of Task T1
sum sum1 + sum2;

return sum;

3 of 13

COMP 322, Spring 2024 (M.Joyner)

Two-way Parallel Array Sum using async & finish constructs

7

COMP 322

Spring 2015

COMP 322: Fundamentals of Parallel Programming

Module 1: Parallelism

+
+

+

X[0]

X[1]

X[2]

…

0

Figure 1: Computation graph for Algorithm 1 (Sequential ArraySum)

the async, hstmt1i, asynchronously (i.e., before, after, or in parallel) with the remainder of the parent
task.

• The statement “finish hstmt2i” causes the parent task to execute the body of the finish, hstmt2i, and
then wait until all async tasks created within hstmt2i have completed.

The notation, hstmti, refers to any legal program statement e.g., if-then-else, for-loop, method call, or a block
enclosed in { } braces. Async and finish statements may be arbitrarily nested, so they can be contained in
hstmti too. (The use of angle brackets in “hstmti” follows a standard notational convention to denote units of
a program. They are unrelated to the < and > comparison operators used in many programming languages.)

We can use async and finish to obtain a simple parallel program for computing an array sum as shown in
Algorithm 2. The graph structure for Algorithm 2 is shown in Figure 2. Note that it di↵ers from Figure 1
since there is no edge or sequence of edges connecting Tasks T2 and T3. This indicates that tasks T2 and T3
can execute in parallel with each other; for example, if your computer has two processor cores, T2 and T3
can be executed on two di↵erent processors at the same time. We will see much richer examples of parallel
programs using async, finish and other constructs during the course.

Algorithm 2: Two-way Parallel ArraySum

Input: Array of numbers, X.

Output: sum = sum of elements in array X.

// Start of Task T1 (main program)
sum1 0; sum2 0;

// Compute sum1 (lower half) and sum2 (upper half) in parallel.
finish{

async{
// Task T2
for i 0 to X.length/2� 1 do

sum1 sum1 +X[i];

};
async{

// Task T3
for i X.length/2 to X.length� 1 do

sum2 sum2 +X[i];

};
};
// Task T1 waits for Tasks T2 and T3 to complete
// Continuation of Task T1
sum sum1 + sum2;

return sum;

3 of 13

…more work…

COMP 322, Spring 2024 (M.Joyner)

Two-way Parallel Array Sum using futures

8

…more work…

COMP 322, Spring 2024 (M.Joyner)

Computation Graphs

• A Computation Graph (CG) captures the dynamic execution of a parallel program, for a
specific input

• CG nodes are “steps” in the program’s execution
— A step is a sequential subcomputation without any spawned, begin-finish or end-finish operations

• CG edges represent ordering constraints
— “Continue” edges define sequencing of steps within a task
— “Spawn” edges connect parent tasks to child spawned tasks
— “Join” edges connect the end of each spawned task to its IEF’s end-must finish

operations

• All computation graphs must be acyclic
—It is not possible for a node to depend on itself

• Computation graphs are examples of “directed acyclic graphs” (DAGs)

9

1. finish { // F1

2. async { A; }

3. finish { // F2

4. async { B1; }

5. async { B2; }

6. } // F2

7. B3;

8. } // F1

COMP 322, Spring 2024 (M.Joyner)

Which statements can potentially be executed
in parallel with each other?

10

F1-endF1-start F2-start F2-end

A

B1

B2

B3

Computation Graph

spawn join

continue

Key idea: If two statements, X and Y,
have no path of directed edges from
one to the other, then they can run in
parallel with each other.

Assume you have 2 washers and 2 dryers. Assume there’s 0 cost to spawn a task.

Place “finish” and “async” blocks around the following tasks:

1. Run load 1 in washer (LW1)

2. Run load 2 in washer (LW2)

3. Run load 1 in dryer (LD1)

4. Run load 2 in dryer (LD2)

COMP 322, Spring 2024 (M.Joyner)

Parallelize Tasks

11

Assume you have 2 washers and 2 dryers. Assume there’s 0 cost to spawn a task.

Place “finish” and “async” blocks around the following tasks:

1. fnish { // F1

2. async { Run load 1 in washer (LW1) }

3. async { Run load 2 in washer (LW2) }

4.} // F1

5. async { Run load 1 in dryer (LD1) }

6. async { Run load 2 in dryer (LD2) }

COMP 322, Spring 2024 (M.Joyner)

Parallelize Tasks (Solution #1)

12

Assume you have 2 washers and 2 dryers. Assume there’s 0 cost to spawn a task.

Place “finish” and “async” blocks around the following tasks:

1. fnish { // F1

2. async { Run load 1 in washer (LW1); Run load 1 in dryer (LD1) }

3. async { Run load 2 in washer (LW2); Run load 2 in dryer (LD2) }

4.} // F1

COMP 322, Spring 2024 (M.Joyner)

Parallelize Tasks (Solution #2)

13

COMP 322, Spring 2024 (M.Joyner)

Draw Computation Graph for Solution

14

1. finish { // F1

2. async LW1;

3. async LW2;

4.} // F1

5. async LD1;

6. async LD2;

COMP 322, Spring 2024 (M.Joyner)

Draw Computation Graph for Solution #1

15

F1-endF1-start

LW1

LD2LW2

LD1

Computation Graph

spawn join

continue

Key idea: If two statements, X and Y,
have no path of directed edges from
one to the other, then they can run in
parallel with each other.

1. finish { // F1

2. async { LW1; LD1 }

3. async { LW2; LD2 }

4.} // F1

COMP 322, Spring 2024 (M.Joyner)

Draw Computation Graph for Solution #2

16

F1-endF1-start

LW1

LD2LW2

LD1

Computation Graph

spawn join

continue

Key idea: If two statements, X and Y,
have no path of directed edges from
one to the other, then they can run in
parallel with each other. Which solution is better?

1. finish { // F1

2. async LW1;

3. async LW2;

4.} // F1

5. async LD1;

6. async LD2;

COMP 322, Spring 2024 (M.Joyner)

Draw Computation Graph for Solution #1

17

F1-endF1-start

LW1

LD2LW2

LD1

Computation Graph

spawn join

continue

Key idea: If two statements, X and Y,
have no path of directed edges from
one to the other, then they can run in
parallel with each other.

20

10 20

10

1. finish { // F1

2. async { LW1; LD1 }

3. async { LW2; LD2 }

4.} // F1

COMP 322, Spring 2024 (M.Joyner)

Draw Computation Graph for Solution #2

18

F1-endF1-start

LW1

LD2LW2

LD1

Computation Graph

spawn join

continue

Key idea: If two statements, X and Y,
have no path of directed edges from
one to the other, then they can run in
parallel with each other.

20

20

10

10

COMP 322, Spring 2024 (M.Joyner)

Announcements & Reminders
•IMPORTANT:

—Watch videos for topics 1.3, 4.5 for next lecture
• HW 1 is due on Wednesday, Jan 31st
• Quiz 2 is due on Monday, Feb 5th
• Module 1 handout is available
• See course web site for syllabus, work assignments, due dates, …

• http://comp322.rice.edu

19

https://canvas.rice.edu/courses/1844/pages/videos-for-unit-1-task-level-parallelism?module_item_id=44098
http://comp322.rice.edu

