COMP 322: Fundamentals of Parallel Programming

Lecture 8: Finish, Async, Computation Graphs

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 8 January 2024

http://comp322.rice.edu

Homework #1 Hints

» sorted operation on streams results in ascending order. To sort in descending
order, use sorted(Comparator.reverseOrder()).

e groupingBy, convert elements of stream into type you want by passing
Collectors.mapping(map-function, downstream-collector) as an additional
argument. For parallel streams use groupingByConcurrent.

Create a mapping between customer IDs and their order IDs whose status 1s "PENDING"
orderRepo. findAll().stream()
.filter(order —> order.getStatus().equals("PENDING"))
.collect(Collectors.groupingBy(order —> order.getCustomer().getId(), Collectors.mapping(
Order::getld,
Collectors.toSet()

)));

Acknowledgement: Chase Hartsell

COMP 322, Spring 2024 (M.Joyner)

Async and Finish Statements for Task Creation and Termination

async S finish S

C Hild task " Execute S, but wait until
¢ reateS a new Ccnl taS a” aSynCS in S,S SCOpe

that executes statement S have terminated.

Il To(Parent task)
STMTO;
finish { //Begin finish
async A
STMT1; //T4(Child task)

}
STMT2; //Continue in T,

Y //End finish (wait for T1)
STMT3; //Continue in T,

COMP 322, Spring 2024 (M.Joyner)

Example of a Sequential Program: Computing sum of array elements

Algorithm 1: Sequential ArraySum

Input: Array of numbers, X.
Output: sum = sum of elements in array X. O

sum <— 0; X[O]
for : < 0 to X.length — 1 do l
L sum < sum + X|i|;
return sum; X[1]
X[2]

o

'

COMP 322, Spring 2024 (M.Joyner) 2

Parallelization Strategy for 2 cores (Two-way Parallel Array Sum)

Task 0: Compute sum Task 1: Compute sum
of lower half of array of upper half of array

\/

®

|

Compute total sum

Basic Idea:

« Decompose problem into two tasks for partial sums
« Combine results to obtain final answer

o Parallel divide-and-conquer pattern

COMP 322, Spring 2024 (M.Joyner) 2

Two-way Parallel Array Sum using async & finish constructs

Algorithm 2: Two-way Parallel ArraySum

Input: Array of numbers, X.
Output: sum = sum of elements in array X.
// Start of Task T1 (main program)
suml < 0; sum?2 < 0;
// Compute suml (lower half) and sum2 (upper half) in parallel.
finish{
asyncq{
// Task T2
for i < 0 to X.length/2 — 1 do
L suml < suml + X|i];

}s
asyncq{
// Task T3
for i + X.length/2 to X.length — 1 do
L sum?2 < sum?2 + X|il;
};

}s

// Task T1 waits for Tasks T2 and T3 to complete
// Continuation of Task T1

sum < suml + sum2;

return sum;

COMP 322, Spring 2024 (M.Joyner)

.-}8
2

Two-way Parallel Array Sum using async & finish constructs

Algorithm 2: Two-way Parallel ArraySum

Input: Array of numbers, X.
Output: sum = sum of elements in array X.
// Start of Task T1 (main program)
suml < 0; sum?2 < 0;
// Compute suml (lower half) and sum2 (upper half) in parallel.
finish{
asyncq{
// Task T2
for i < 0 to X.length/2 — 1 do
L suml < suml + X|i];

};

asyncq{

// Task T3

for i + X.length/2 to X.length — 1 do

L sum?2 < sum?2 + X|il;

};
};

...more work...

sum <— suml + sum?2;
return sum;

COMP 322, Spring 2024 (M.Joyner)

.-.98
2

Two-way Parallel Array Sum using futures

// Parent Task Tl (main program)
// Compute suml (lower half) & sum2 (upper half) in parallel
var suml = future(() -> { // Future Task T2
int sum = 0;
for (int 1 = 0; 1 < X.length / 2; i++) sum += X[1];
return sum;
});
var sum2 = future(() -> { // Future Task T3
int sum = 0;
for (int 1 = X.length / 2; 1 < X.length; i++) sum += X[1];
return sum;

7))

...Mmore work...
int total = suml.get() + sum2.get();

COMP 322, Spring 2024 (M.Joyner)

Computation Graphs

A Computation Graph (CQ) captures the dynamic execution of a parallel program, for a
specific input

CG nodes are “steps” in the program’s execution
— A step is a sequential subcomputation without any spawned, begin-finish or end-finish operations

CG edges represent ordering constraints
— “Continue” edges define sequencing of steps within a task
— “Spawn” edges connect parent tasks to child spawned tasks

— “Join” edges connect the end of each spawned task to its IEF’s end-must finish
operations

All computation graphs must be acyclic
—It is not possible for a node to depend on itself

Computation graphs are examples of “directed acyclic graphs” (DAGS)

COMP 322, Spring 2024 (M.Joyner)

.-.98
2

10

Which statements can potentially be executed
iIn parallel with each other?

finish { // F1 Computation Graph
async { A; }
finish { // F2

:
2.

4. async{B1;} R x

5. async { B2; } continue

6. }//F2 @

7/ B3: ‘

8

Y/ F

have no path of directed edges from
one to the other, then they can run in
parallel with each other.

Key idea: If two statements, X and Y, @

COMP 322, Spring 2024 (M.Joyner)

11

Parallelize Tasks

Assume you have 2 washers and 2 dryers. Assume there’s O cost to spawn a task.

Place “finish” and “async” blocks around the following tasks:

1. Run load 1 in washer (LW1)
2. Run load 2 in washer (LW2)
3. Runload 1 in dryer (LD1)
4. Run load 2 in dryer (LD2)

COMP 322, Spring 2024 (M.Joyner)

.}8
2

12

Parallelize Tasks (Solution #1)

Assume you have 2 washers and 2 dryers. Assume there’s O cost to spawn a task.

Place “finish” and “async” blocks around the following tasks:

1. finish { // F1

2. async { Run load 1 in washer (LW1) }
3. async { Run load 2 in washer (LW2) }
4.}/ F1

5. async { Run load 1 in dryer (LD1) }

6. async { Run load 2 in dryer (LD2) }

COMP 322, Spring 2024 (M.Joyner)

.-}8
2

13

Parallelize Tasks (Solution #2)

Assume you have 2 washers and 2 dryers. Assume there’s O cost to spawn a task.

Place “finish” and “async” blocks around the following tasks:

1. finish { // F1

2. async { Runload 1 in washer (LW1); Run load 1 in dryer (LD1) }
3. async { Run load 2 in washer (LW2); Run load 2 in dryer (LD2) }
4.} /] F1

COMP 322, Spring 2024 (M.Joyner)

.-}8
2

14

Draw Computation Graph for Solution

COMP 322, Spring 2024 (M.Joyner)

15

Draw Computation Graph for Solution #1

1. finish { // F1 Computation Graph
2. async LW1,;
3. async LW2;

4.} /1 F1 _
5. async LD1;
6. async LD2; ;

Key idea: If two statements, X and Y,
have no path of directed edges from
one to the other, then they can run in
parallel with each other.

COMP 322, Spring 2024 (M.Joyner)

16

Draw Computation Graph for Solution #2

1. finish { // F1 Computation Graph

2. async{LW1;LD1}
3. async{lLW2;LD2}
() —
\j‘oin
continue

4.} /] F1
— ()

Which solution is better?

Key idea: If two statements, X and Y,
have no path of directed edges from
one to the other, then they can run in
parallel with each other.

COMP 322, Spring 2024 (M.Joyner)

Draw Computation Graph for Solution #1

1. finish { // F1 Computation Graph

2. async LW1,;
3. async LW2;
N
continue
e

4/ F1
10 / \ 20

20

5. async LD1;
6. async LD2;

Key idea: If two statements, X and Y,
have no path of directed edges from
one to the other, then they can run in
parallel with each other.

17 COMP 322, Spring 2024 (M.Joyner)

Draw Computation Graph for Solution #2

1. finish { // F1 Computation Graph
2. async{LW1;LD1}

3. async{lLW2;LD2}
—
4.3 /I F1 spawn @ .

Key idea: If two statements, X and Y,
have no path of directed edges from
one to the other, then they can run in
parallel with each other.

18 COMP 322, Spring 2024 (M.Joyner)

19

Announcements & Reminders

* IMPORTANT:
—\Watch videos for topics 1.3, 4.5 for next lecture

 HW 1 is due on Wednesday, Jan 31st

e Quiz 2 is due on Monday, Feb 5th

* Module 1 handout is available

* See course web site for syllabus, work assignments, due dates, ...

- http://comp322.rice.edu

COMP 322, Spring 2024 (M.Joyner)

https://canvas.rice.edu/courses/1844/pages/videos-for-unit-1-task-level-parallelism?module_item_id=44098
http://comp322.rice.edu

