COMP 322: Fundamentals of Parallel Programming

Lecture 9: Ideal Parallelism, Data-Driven Tasks

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 9 January 2024

http://comp322.rice.edu

Complexity Measures for Computation Graphs

Define
 TIME(N) = execution time of node N

« WORK(G) = sum of TIME(N), for all nodes N in CG G
—WORK(G) is the total work to be performed in G

 CPL(G) =length of a longest path in CG G, when adding up execution times of
all nodes in the path
— Such paths are called critical paths

— CPL(G) is the length of these paths (critical path length, also referred to as
the span of the graph)

— CPL(G) is also the shortest possible execution time for the computation graph

COMP 322, Spring 2024 (M.Joyner)

|deal Parallelism

» Define ideal parallelism of
Computation G Graph as the
ratio, WORK(G)/CPL(G)

» |deal Parallelism only depends
on the computation graph, and is
the speedup that you can obtain
with an unbounded number of

Processors
Does ideal parallelism tell us we'll
Example: need at least x processors and/or at
most y processors to get max
WORK(G) = 26 speedup?
CPL(G) = 11

Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36

COMP 322, Spring 2024 (M.Joyner)

|deal Parallelism

» Define ideal parallelism of
Computation G Graph as the
ratio, WORK(G)/CPL(G)

» |deal Parallelism only depends
on the computation graph, and is
the speedup that you can obtain
with an unbounded number of

Processors

Example:

WORK(G) = 26

CPL(G) = 11

|deal Parallelism = WOR

Does ideal parallelism tell us we'll
need at least x processors and/or at
most y processors to get max
speedup?

CaClatClatiaCiaCiaClaCiat

K(G)/CPL(G) = 26/11 ~ 2.36 OIOJORORORORONCIROROTO NN RN

COMP 322, Spring 2024 (M.Joyner)

L

Which Computation Graph has more ideal parallelism?

Assume that all nodes have TIME =1, so WORK = 10 for both graphs.
Computation Graph 1 Computation Graph 2

COMP 322, Spring 2024 (M.Joyner)

Example instruction sequence and its dataflow graph

x =a+ b;
y=b*7,
z = (x-y) * (xty);

An operator executes when all its input
values are present; copies of the result value
are distributed to the destination operators.

2.

COMP 322, Spring 2024 (M.Joyner)

Macro-Dataflow Programming

e “Macro-dataflow” = extension of dataflow

Task . .
model from instruction-level to task-level
operations
TaSk / \ TaSk * General idea: build an arbitrary task
graph, but restrict all inter-task
communications to single-assignment
variables (like futures)
Tas Task e Static dataflow ==> graph fixed when
program execution starts
 Dynamic dataflow ==> graph can grow
~ -~ dynamically
Task » Semantic guarantees: race-freedom,
= determinism
* “Deadlocks” are possible due to
Commum;ssignment” unavailable inputs (but they are
variables deterministic)

/ COMP 322, Spring 2024 (M.Joyner)

Extending HJ Futures for Macro-Dataflow:
Data-Driven Futures (DDFs)

final HjDataDrivenFuture<T1> ddfA = newDataDrivenFuture();

Allocate an instance of a data-driven-future object (container)

Object in container must be of type T1, and can only be assigned once via put()
operations

HjDataDrivenFuture extends the HjFuture interface

ddfA.put(V) :

Store object V (of type T1) in ddfA, thereby making ddfA available
Single-assignment rule: at most one put is permitted on a given DDF

COMP 322, Spring 2024 (M.Joyner))

Extending HJ Futures for Macro-Dataflow:
Data-Driven Tasks (DDTs)

asyncAwait(ddfA, ddfB, ..., () -> Stmt);

Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB, ... become available (i.e.,
after task becomes “enabled”)

Alternatively, you can pass a list to asyncAwait
Await clause can be used to implement “nodes” and “edges” in a computation graph

ddfA.get()

Return value (of type T1) stored in ddfA
Throws an exception if put() has not been performed

ddfA.safeGet()

Doesn’t throw an exception

— Should be performed by async’s that contain ddfA in their await clause, or if there’s some other
synchronization to guarantee that the put() was performed

-
COMP 322, Spring 2024 (M.Joyner))

.-.98
2

What is Deadlock?

A parallel program execution contains a deadlock if some task’s execution remains incomplete
due to it being blocked indefinitely awaiting some condition

Example of a program with a deadlocking execution
final HJDataDrivenFuture<Object> left = newDataDrivenFuture();
final HdDataDrivenFuture<Object> right = newDataDrivenFuture();
finish {
asyncAwait (left) right.put(rightBuilder()); // Task1
asyncAwait (right) left.put(leftBuilder()); // Task2
}

In this case, Task1 and Task?2 are in a deadlock cycle.

COMP 322, Spring 2024 (M.Joyner)

>
w2,

78

11

Implementing Future Tasks using DDTs

Future version

1. var £ = future(() -> { return g(); });
2. Sl
3. async(() -> {
4. . = f.get(); // blocks if needed
5. S2;
6. S3;
7. })i
DDT version
1. var £ = newDataDrivenFuture();
2. async(() -> { f.put(g()) });
3. S1
4., asyncAwait(f, () -> {
5. . = f.safeGet(); // does not need to block — why?
6. S2;
7. S3;
8. })i

COMP 322, Spring 2024 (M.Joyner)

D
2

12

Differences between Futures and DDTs

Consumer task blocks on get() for each future that it reads, whereas async-await
does not start execution till all futures are available

Future tasks cannot deadlock, but it is possible for a DDT to block indefinitely
(“deadlock”) if one of its input futures never becomes available

DDTs and DDFs are more general than futures

— Producer task can only write to a single future object, whereas a DDT can write to
multiple DDF objects

— The choice of which future object to write to is tied to a future task at creation time,
where as the choice of output DDF can be deferred to any point with a DDT

— Consumer DDTs can be created before the producer tasks

DDTs and DDFs can be implemented more efficiently than futures
— An “asyncAwait” statement does not block the worker, unlike a future.get()

2

COMP 322, Spring 2024 (M.Joyner)

Two Exception (error) cases for DDFs that cannot occur with futures

« (Case 1: If two put’s are attempted on the same DDF, an exception is thrown because
of the violation of the single-assignment rule

— There can be at most one value provided for a future object (since it comes from the
producer task’s return statement)

 Case 2: If a get is attempted by a task on a DDF that was not in the task’s await list,
then an exception is thrown because DDF’s do not support blocking gets

— Futures support blocking gets

13 COMP 322, Spring 2024 (M.Joyner)

14

Deadlock example with DD Ts (cannot be reproduced with futures)

o 4 o O & W DD

A parallel program execution contains a deadlock if some task’s execution remains incomplete
due to it being blocked indefinitely awaiting some condition

var left = newDataDrivenFuture();

var right = newDataDrivenFuture();

finish(() -> {

asyncAwait (left, () -> { Can you think of a deadlock example with futures or explain why it can’t happen?
right.put(rightWriter()); });

asyncAwait(right, () -> {
left.put(leftWriter()); });

1)

COMP 322, Spring 2024 (M.Joyner)

.-}8
2

