COMP 322: Parallel and Concurrent Programming

Lecture 15: Abstract vs. Real Performance

“Everything You Ever Wanted to Know About HJLib but Were Too Afraid to Ask”

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 15 February 2024

http://comp322.rice.edu

Functional Approach to Parallelism

“Functional”: futures, future tasks, streams, data-driven tasks and futures
“Not-so functional”. async tasks and finish scopes, tasks that modify shared memory

Advantages to functional approach

- Easier to reason about

- Don’t have to worry about data races

- Leads to compact, elegant, easy to read code

- Easy to scale to massively parallel (because you don’t need to worry about data races)

Disadvantages

- May be more expensive to execute (blocking future.get() vs. simply reading a shared memory location)
- May need copying of data structures to avoid data races and mutation

- Hard to scale to massively parallel (because of overheads)

COMP 322, Spring 2024 (M. Joyner)

Abstract vs. Real Performance

« Abstract performance
» Focus on operation counts for WORK and CPL, regardless of actual execution time
- Ignore the nitty-gritty of task creation and execution overhead
» Same “performance” regardless of the machine
 Real performance
» Lots of things happening “under the hood”
» Operating system, runtime and hardware all have an impact
» Process creation/execution vs. thread creation/execution vs. task creation/execution
- Tasks could be blocked, waiting on some event
- Complex matter, but important to at least have a general idea of the costs

3 COMP 322, Spring 2024 (M. Joyner)

private static double recursiveMaxParallel(final double[] inX, final int start, final int end)

{

Lab 4: Recursive Task Parallelism

throws SuspendableException

if (end - start == 2) {
doWork(1);
return 1/inX[end - 1] + 1/inX[start];
} else {
var bottom = future(() -> recursiveMaxParallel(inX, start, (end + start) / 2));
var top = future(() -> recursiveMaxParallel(inX, (end+start) / 2, end));
var bVal = bottom.get();

var tVal = top.get(); v Test Results

doWork(1); v« edu.rice.comp322.Lab4CorrectnessTest
return bVal + tVal;

\ testReciprocalParallelism2Futures

testReciprocalParallelism4Futures
testReciprocalParallelism8Futures
testReciprocalMaxParallelism

COMP 322, Spring 2024 (M. Joyner)

4sec 459 ms

598
2

Cutoff Strategy for Recursive Task Parallelism

private static double recursiveMaxParallelCutoff(final double[] inX, final int start, final int end,
final int threshold) throws SuspendableException {
if (end - start <= threshold) {
double sum = 0.0;
for(inti = start; i <end; i++) {
doWork(1);
sum =sum + 1 /inX]i];
}
return sum;
} else {
var bottom = future(() -> recursiveMaxParallelCutoff(inX, start, (end + start) / 2, threshold));
var top = future(() -> recursiveMaxParallelCutoff(inX, (end+start) / 2, end, threshold));
var bVal = bottom.get();

var tVal = top.get(); Execution with threshold 6400 took 56 milliseconds.
doWork(1); Execut@on w@tq threshold 12800 took 54 r_ni_lliseconds.
return bVal + tVal: Execut!on with thresho d 25600 took 4 m!ll!seconds.
\ Execution with threshold 51200 took 3 milliseconds.
Execution with threshold 102400 took 6 milliseconds.
) Execution with threshold 204800 took 10 milliseconds.

5 COMP 322, Spring 2024 (M. Joyner)

+}8
2

HJ-lib Compilation and Execution Environment

HJ-lib source program is a standard Java

Java 11 IDE Foo.java 11 program
l Java compiler translates
javac Foo.javalJava compiler Foo.java to FFoo.class, along
1 with calls to HJ-lib with lambda
i h
Foo.class !coarame
All the “magic” happens here!
java Foo
HJ-lib Runtime HJ runtime initializes m worker
Environment = | threads
Java Runtime (value of m depends on options
Environment + or default value)
HJ-lib libraries
! HJ Abstract Performance Metrics
(enabled by appropriate options)
HJ-lib Program Output

COMP 322, Spring 2024 (M. Joyner)

Looking under the hood - let’s start with the
hardware

i

Core 0. Core 1 Core2 - Core3 Core 0. Core 1 Core2 - Core3

Shared L3 Cache - Shared L3 Cache -

N/ \V

Main Memory (DRAM)

COMP 322, Spring 2024 (M. Joyner)

How does a process run on a single core?

Processes are managed by OS kernel

+ Important: the kernel is not a separate process,
but rather runs as part of some user process

Control flow passes from one process to
another via a context switch

Process A

(e.g., Java application A) Process B (e.g., Java application B)

user code

kernel code

user code

Context switches between two processes can be very expensive!
Source: COMP 321 lecture on Exceptional Control Flow (Alan Cox)

COMP 322, Spring 2024 (M. Joyner)

>
D,

What happens when we execute a Java program

A Java program executes in a single Java Virtual Machine
(JVM) process with multiple threads

Threads associated with a single process can share the
same data

Java main program starts with a single thread (T1), but can
create additional threads (T2, T3, T4, T5) via library calls

Java threads may execute concurrently on different cores, or
may be context-switched on the same core

COMP 322, Spring 2024 (M. Joyner)

Java application with five threads —-
T1, T2, T3, T4, T5 — all of which can
access a common set of shared objects

Figure source: COMP 321 lecture on Concurrency

(Alan Cox)

A
/®\

Thread-level Context Switching on the same processor core

Thread 1 Thread 2

} thread context switch

} thread context switch

» Thread context switch is cheaper than a process context switch, but is still expensive (just not “very’
expensive!)

* |t would be ideal to just execute one thread per core (or hardware thread context) to avoid context

switches
Figure source: COMP 321 lecture on Concurrency (Alan Cox)

10 COMP 322, Spring 2024 (M. Joyner)

38
2

Now, what happens is a task-parallel Java program
(e.q., HJ-lib, Java Fork/Join, etc.)

Logical Work Queue

HJ-Lib Tasks & Continuations Ready (async’s & continuations) Local variables are
Tasks private to each task
Worker threads
»
Operating System push R pul
work work
Hardware cores >)))

(0

Workers w, w, w, W,

Static & instance fields are shared among tasks

« HJ-lib runtime creates a small number of worker threads, typically one per core
« Workers push new tasks and “continuations” into a logical work queue

« Workers pull task/continuation work items from logical work queue when they are
idle (remember greedy scheduling?)

11 COMP 322, Spring 2024 (M. Joyner)

2.

Task-Parallel Model: Checkout Counter
Analoqv

r'

Leet Tuesday

L@- =

. iy

x e
The 5 going to
| be a great day.
. - ; ; L ERSE T B

i
el

: i N .
Y e e e
(Gt L N NS ~
1\ =

X
‘—\

* Think of each checkout counter as a processor core

Image sources: http://www.deviantart.com/art/Randomness-20-178737664,
http.//www.wholefoodsmarket.com/blog/whole-story/new-haight-ashbury-store

12 COMP 322, Spring 2024 (M. Joyner)

http://www.wholefoodsmarket.com/blog/whole-story/new-haight-ashbury-store

Task-Parallel Model: Checkout Counter

Analoav

ﬁ f Wanna bet?

* Think of each checkout counter as a processor core

« And of customers as tasks

Image sources: http://www.deviantart.com/art/Randomness-20-178737664,
http.//www.wholefoodsmarket.com/blog/whole-story/new-haight-ashbury-store

13 COMP 322, Spring 2024 (M. Joyner)

http://www.wholefoodsmarket.com/blog/whole-story/new-haight-ashbury-store

14

All I1Is well until a task blocks ...

Mowe playing: smooth Jazz

| need to wait until my wife
gets here to checkout.

Uh: ires you do, sir|| - - -

. %

Meedle scratches, music stops

oey, | got the
remaining items.

A blocked task/customer can hold up the entire line
What happens if each checkout counter has a blocked customer?

source: http://viper-x27.deviantart.com/art/Checkout-Lane-Guest-Comic-161795346

COMP 322, Spring 2024 (M. Joyner)

http://viper-x27.deviantart.com/art/Checkout-Lane-Guest-Comic-161795346

15

Approach 1: Create more worker threads
(as in HJ-Lib’s Blocking Runtime)

V - - v@ . Excuse me sonny. ..

When is this line going to ;i
move?! 2. Are you qgoing to open

another regester soon?

Suuuure. ..

Just give asecondso |
can duplcate myselfl

Creating too many worker threads can exhaust system resources

(OutOfMemoryError)

eads to context-switch overheads when blocked worker threads get unblocked

source: http://www.deviantart.com/art/Randomness-5-90424754

COMP 322, Spring 2024 (M. Joyner)

16

Blocking Runtime (contd)

Logical Work Queue

(async’s & continuations) Local variables are
private to each task
=
push SENEERRNRN pull
work \ work
)))

future.get() operation —FFPP

Workers w, w, w, W,

Static & instance fields are shared among tasks

Assume that there are five tasks (A1 ... A5)

Q: What happens if four tasks (say, A1 ... A4) executing on workers w1 ... w4 all
wait on the same future that’s computed by A5?

COMP 322, Spring 2024 (M. Joyner)

2.

17

Blocking Runtime (contd)

Logical Work Queue
(async's & continuations) Local variables are

private to each task

=
push EEREREREEN pull
work work

/ >)) To
avoid deadlock, a blocked
future.get() operation AFFFP worker (e.g., w4) creates a new

Workers w, w, w, W,

Static & instance fields are shared among tasks

Assume that there are five tasks (A1 ... A5)

Q: What happens if four tasks (say, A1 ... A4) executing on workers w1 ... w4 all wait
on the same future that’'s computed by A5?

A: Deadlock! (All four tasks will wait for task A5 to compute the future.)

Blocking Runtime’s solution to avoid deadlock: keep task blocked on worker thread,
and create a new worker thread when task blocks

COMP 322, Spring 2024 (M. Joyner)

18

Blocking Runtime (contd)

Examples of blocking operations

- End of finish
 Future get
- Barrier next

Approach: Block underlying worker thread when task performs a blocking operation, and launch an
additional worker thread

Too many blocking operations can result in exceptions and/or poor performance, e.g.,

 jJava.lang.IllegalStateException: Error 1n executing blocked code! [89 blocked

threads]
Maximum number of worker threads can be configured if needed

- HjSystemProperty.maxThreads.set(100);

COMP 322, Spring 2024 (M. Joyner)

598
2

19

Approach 2: Suspend task continuations at blocking points
(as in HJ-Lib’s Cooperative Runtime)

Ready
Queue

Executing — -
Task

Upon a blocking operation, the currently executing tasks suspends itself and yields
control back to the worker

Task’s continuation is stored in the suspended queue and added back into the
ready queue when it is unblocked

Pro: No overhead of creating additional worker threads
Con: Need to create continuations (enabled by -javaagent option)

- <«—— Suspended
Queue

COMP 322, Spring 2024 (M. Joyner)

o
1.
2
3
4
5.
6
7
8

20

.}

. S5; - Continuations

Continuations

A continuation can be a point immediately following a blocking operation, such as an end-finish,
future get(), barrier/phaser next(), etc.

Continuations are also referred to as task-switching points

- Program points at which a worker may switch execution between different tasks (depends on scheduling
policy)

finish { // F1

. async Af;
. finish { // F2

async A3;

async A4;
€ —

< -

.}

COMP 322, Spring 2024 (M. Joyner)

5}8
2

Cooperative Scheduling (view from a single worker)

Task-1 Task-1 d Useful work\

— for some
% other task on
o same worker
E thread
; S Spend Task-2
o |
©
;)
)
@ resume §
)
5 suspend/complete
=) Cooperative
o runtime
.é automatically
creates suspend

continuations at
suspend points
via bytecode
instrumentation
enabled by
-javaagent

COMP 322, Spring 2024 (M. Joyner)

HJ-lib’s Cooperative Runtime (contd)

Suspended Tasks
reqgistered with "Event-

Ready/Resumed Task

Queues Driven Controls (EDCs)”
fask : : [{ task }
task | |task [task } Tt
task task A [{ task }

Worker Threads Synchronization objects
that use EDCs

Any operation that contributes to unblocking a task can be viewed as an event e.qg., task termination in
finish, return from a future, signal on barrier, put on a data-driven-future, ...

22 COMP 322, Spring 2024 (M. Joyner)

23

Why are Data-Driven Tasks (DD Ts) more efficient than
Futures?

Consumer task blocks on get() for each future that it reads, whereas asyncAwait does not start
execution until all Data-Driven Futures (DDFs) are available

- An “asyncAwait” call does not block the worker, unlike a future.get()
- No need to create a continuation for asyncAwait; a data-driven task is directly placed on the Suspended queue

by default

Therefore, DDTs can be executed on a Blocking Runtime without the need to create additional
worker threads, or on a Cooperative Runtime without the need to create continuations

38
2

COMP 322, Spring 2024 (M. Joyner)

Abstract vs Real Performance in HJ-Lib

« Abstract Performance

. _ Ready/Resumed Task Blocked Tasks waiting on
+ Abstract metrics focus on operation counts for Queues synchronization objects
WORK and CPL, regardless of actual execution time (€.9. end-finish, future.get(), etc.)
task task |
task | """ | task 0 " [task
 Real Performance fack task] taf taf
- HJlib uses ForkdoinPool implementation of Java
- : : : . sync-obj . sync-obj
Executor interface with Blocking or Cooperative = - - —
Runtime (default)
Running
Worker Threads
(at most one ready task Blocked
Worker Threads

running on a worker thread) : task)
one per tas

24 COMP 322, Spring 2024 (M. Joyner)

25

Summary

Functional approach is great, but sometimes can lead to performance issues
Knowing what is happening “under the covers” can help you design better performing algorithms
Cutoff strategy is a great way to balance parallelism and overhead for recursive task parallelism

Depending on the runtime, your task parallel program may have some tasks that could block the
whole CPU thread

Processes are more expensive than threads, threads are more expensive than tasks
In order to deliver performance, most runtimes assume they have a full control of OS threads

+ Don’t mix Java parallel Streams with HJLib constructs

- Don’t mix Java threads with HJLib tasks and/or Java parallel Streams
+ An HJ runtime instance inside of its own Java thread is usually OK

» A Java parallel Stream computation inside an HJ task is usually OK

COMP 322, Spring 2024 (M. Joyner)

2

