
COMP 322: Fundamentals of Parallel Programming

Lecture 27: Read/Write Pattern, Java Locks - Soundness and
Progress Guarantees

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 27 March 2024

http://comp322.rice.edu

COMP 322, Spring 2024 (M.Joyner)

Reading vs Writing
• Recall that the use of synchronization is to protect interfering accesses

—Concurrent reads of same memory: Not a problem
—Concurrent writes of same memory: Problem
—Concurrent read & write of same memory: Problem

So far:
—If concurrent write/write or read/write might occur, use synchronization to ensure one-thread-at-a-time

But:
—This is unnecessarily conservative: we could still allow multiple simultaneous readers (as in object-

based isolation)
Consider a hashtable with one coarse-grained lock

—Only one thread can perform operations at a time
But suppose:

—There are many simultaneous lookup operations and insert operations are rare

2

COMP 322, Spring 2024 (M. Joyner)

Motivation for Read-Write Object-based isolation
1. Sorted List example
2. public boolean contains(Object object) {
3. // Observation: multiple calls to contains() should not
4. // interfere with each other
5. return isolatedWithReturn(this, () -> {
6. Entry pred, curr;
7. ...
8. return (key == curr.key);
9. });
10. }
11.
12. public int add(Object object) {
13. return isolatedWithReturn(this, () -> {
14. Entry pred, curr;
15. ...
16. if (...) return 1; else return 0;
17. });
18. }

3

COMP 322, Spring 2024 (M. Joyner)

Read-Write Object-Based Isolation
isolated(readMode(obj1),writeMode(obj2), …, () -> <body>);
• Programmer specifies list of objects as well as their read-write modes for which isolation is required
• Mutual exclusion is only guaranteed for instances of isolated statements that have a non-empty intersection in their object lists such

that one of the accesses is in writeMode
• Sorted List example
1. public boolean contains(Object object) {
2. return isolatedWithReturn(readMode(this), () -> {
3. Entry pred, curr;
4. ...
5. return (key == curr.key);
6. });
7. }
8.
9. public int add(Object object) {
10. return isolatedWithReturn(writeMode(this), () -> {
11. Entry pred, curr;
12. ...
13. if (...) return 1; else return 0;
14. });
15. }

4

COMP 322, Spring 2024 (M.Joyner)

java.util.concurrent.locks.ReadWriteLock interface
interface ReadWriteLock {
 Lock readLock();
 Lock writeLock();

 }

• Even though the interface appears to just define a pair of locks, the semantics of the pair of locks is coupled as
follows
—Case 1: a thread has successfully acquired writeLock().lock()

– No other thread can acquire readLock() or writeLock()

—Case 2: no thread has acquired writeLock().lock()
– Multiple threads can acquire readLock()
– No other thread can acquire writeLock()

• java.util.concurrent.locks.ReadWriteLock interface is implemented by
java.util.concurrent.locks.ReadWriteReentrantLock class

5

COMP 322, Spring 2024 (M.Joyner)

Hashtable Example
class Hashtable<K,V> {
 …
 // coarse-grained, one lock for table
 ReentrantReadWriteLock lk = new ReentrantReadWriteLock();
 V lookup(K key) {
 int bucket = hasher(key);
 lk.readLock().lock(); // only blocks writers
 … read array[bucket] …
 lk.readLock().unlock();
 }
 void insert(K key, V val) {
 int bucket = hasher(key);
 lk.writeLock().lock(); // blocks readers and writers
 … write array[bucket] …

 lk.writeLock().unlock();
 }
}

6

COMP 322, Spring 2024 (M. Joyner)

Read-Write Concurrency Pattern

• Common pattern in concurrency
• HJLib Read-Write Object Isolation, Java ReentrantReadWriteLock, C++ Boost UpgradeLockable,

sync.RWMutex in Go
• Upgradeable/downgradeable

• Can upgrade Read access to Write access
• Could be tricky to implement and avoid deadlock

• Downgrade Write access to Read access
• Priority policies

• Read-preferring
• Max concurrency
• Could starve writers

• Write-preferring
• Less concurrency
• More overhead

7

COMP 322, Spring 2024 (M.Joyner)

Safety vs Liveness
• In a concurrent setting, we need to specify both the safety and the liveness properties of an object

• Need a way to define
—Safety: when an implementation is functionally correct (does not produce a wrong answer)
—Liveness: the conditions under which it guarantees progress (completes execution successfully)

• Examples of safety
• Data race freedom is a desirable safety property for parallel programs (Module 1)
• Linearizability is a desirable safety property for concurrent objects (Module 2)

8

COMP 322, Spring 2024 (M.Joyner)

Liveness
• Liveness = a program’s ability to make progress in a timely manner

• Termination (“no infinite loop”) is not necessarily a requirement for liveness
• some applications are designed to be non-terminating

• Different levels of liveness guarantees (from weaker to stronger) for tasks/threads in a concurrent
program
1.Deadlock freedom
2.Livelock freedom
3.Starvation freedom
4. Bounded wait

9

COMP 322, Spring 2024 (M.Joyner)

1. Deadlock-Free Parallel Program Executions
• A parallel program execution is deadlock-free if no task’s execution remains incomplete due to it being

blocked awaiting some condition
• Example of a program with a deadlocking execution
	

• In this case, Task1 and Task2 are in a deadlock cycle.
– Construct that can lead to deadlock in HJlib: async await
– There are many constructs that can lead to deadlock cycles in other programming models (e.g.,

thread join, synchronized, Java locks)

10

// Thread T1
public void leftHand() {
 synchronized(obj1) {
 synchronized(obj2) {
 // work with obj1 & obj2
 . . .
 }
 }
}

// Thread T2
public void leftHand() {
 synchronized(obj2) {
 synchronized(obj1) {
 // work with obj2 & obj1
 . . .
 }
 }
}

COMP 322, Spring 2024 (M.Joyner)

2. Livelock-Free Parallel Program
• A parallel program execution exhibits livelock if two or more tasks repeat the same interactions without

making any progress (special case of nontermination)
• Livelock example:

// Task T1
incrToTwo(AtomicInteger ai) {
 // increment ai till it reaches 2
 while (ai.incrementAndGet() < 2);
}

• Many well-intended approaches to avoid deadlock result in livelock instead

11

// Task T2
decrToNegTwo(AtomicInteger ai) {
 // decrement ai till it reaches -2
 while (ai.decrementAndGet() > -2);
}

COMP 322, Spring 2024 (M.Joyner)

3. Starvation-Free Parallel Program Executions
A parallel program execution exhibits starvation if some task is repeatedly denied the opportunity to
make progress

—Starvation-freedom is sometimes referred to as “lock-out freedom”
—Starvation is possible in HJ programs, since all tasks in the same program are assumed to be

cooperating, rather than competing
– If starvation occurs in a deadlock-free HJ program, the “equivalent” sequential program must be

non-terminating (infinite loop)

12

COMP 322, Spring 2024 (M.Joyner)

4. Bounded Wait
• A parallel program execution exhibits bounded wait if each task requesting a resource should only

have to wait for a bounded number of other tasks to “cut in line” i.e., to gain access to the resource
after its request has been registered.

• If bound = 0, then the program execution is fair

13

COMP 322, Spring 2024 (M.Joyner)

Key Functional Groups in java.util.concurrent (j.u.c.)
• Atomic variables

—The key to writing lock-free algorithms
• Concurrent Collections:

—Queues, blocking queues, concurrent hash map, …
—Data structures designed for concurrent environments

• Locks and Conditions
—More flexible synchronization control
—Read/write locks

• Executors, Thread pools and Futures
—Execution frameworks for asynchronous tasking

• Synchronizers: Semaphore
—Ready made tool for thread coordination

14

COMP 322, Spring 2024 (M.Joyner)

Semaphores
• Conceptually serve as “permit” holders

—Construct with an initial number of permits
—acquire(): waits for permit to be available, then “takes” one, i.e., decrements the count of

available permits
—release(): “returns” a permit, i.e., increments the count of available permits
—But no actual permits change hands

—The semaphore just maintains the current count
—Thread performing release() can be different from the thread performing acquire()

• “fair” variant hands out permits in FIFO order
• Useful for managing bounded access to a shared resource

15

