
COMP 322: Parallel and Concurrent Programming

Lecture 30: Parallel Graph Algorithms

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 30 March 2024

Some slides in this presentation are adopted from Aydin Buluç: “Parallel Graph Algorithms”, LBNL, CS267, Spring 2016,
Hall Perkins, “Data Structures”, CSE 374, University of Washington

http://comp322.rice.edu

COMP 322, Spring 2024 (M. Joyner)

Graphs

n=|V| (number of vertices)
m=|E| (number of edges)
D=diameter (max #hops between any pair of vertices)
• Edges can be directed or undirected, weighted or not.
• They can even have attributes (i.e. semantic graphs)
• Sequences of edges <u1,u2>, <u2,u3>, … ,<un-1,un> is a path from u1 to un.

Its length is the sum of its weights.

2

Graph G = (V,E)
- a set of vertices and a set of edges

between vertices

Edge
Vertex

COMP 322, Spring 2024 (M. Joyner)

Routing in transportation networks

Road networks, Point-to-point shortest paths: 15 seconds (naïve)  10 microseconds

3

H. Bast et al., “Fast Routing in Road Networks with Transit Nodes”, Science 27, 2007.

COMP 322, Spring 2024 (M. Joyner)

Internet and the WWW

• The world-wide web can be represented as a directed graph
—Web search and crawl: traversal
—Link analysis, ranking: Page rank and HITS
—Document classification and clustering

• Internet topologies (router networks) are naturally modeled as graphs

4

COMP 322, Spring 2024 (M. Joyner)

Adjacency List graph representation

5

1

3

2
4

12

26

7

14

19

1

2

3

4

1 12 3 26

2 19

2 14 4 7

COMP 322, Spring 2024 (M. Joyner)

Graph Algorithms
• Traversals

• DFS, BFS

• Finding paths
• Single-source shortest paths (Dijkstra, Bellman-Ford)

• All-pairs shortest-paths (Floyd-Warshall)

• Maximal independent sets

• Decomposition (connected components, strongly connected components)

• Maximum cardinality matching

• Connecting
• Minimum spanning tree

6

COMP 322, Spring 2024 (M. Joyner)

Spanning Tree Definition

• A spanning tree, T, of a connected undirected graph G is

• rooted at some vertex of G

• defined by a parent map for each vertex

• contains all the vertices of G, i.e. spans all vertices

• contains exactly |v| - 1 edges

• adding any other edge will create a cycle

• contains no cycles (a tree!)

• The edges involved in T are a subset of the edges in G

7

COMP 322, Spring 2024 (M. Joyner)

An Example Graph with 4 possible spanning trees rooted at
vertex A
A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

Vertex Parent
A null
B D
C A
D C

Vertex Parent
A null
B A
C D
D B

Vertex Parent
A null
B A
C A
D B

Vertex Parent
A null
B A
C A
D C

Example Undirected Graph:

Spanning Trees (edges are directed from child to parent):

8

COMP 322, Spring 2024 (M. Joyner)

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. V parent; // output value of parent in spanning tree

4. boolean makeParent(V n) {
5. if (parent == null) { parent = n; return true; }
6. else return false; // return true if n became parent
7. } // makeParent

8. void compute() {
9. for (int i=0; i<neighbors.length; i++) {
10. final V child = neighbors[i];
11. if (child.makeParent(this))
12. child.compute(); // recursive call
13. }
14. } // compute
15. } // class V
16. . . . // main program
17. root.parent = root; // Use self-cycle to identify root
18. root.compute();
19. . . .

Sequential Spanning Tree Algorithm

9

COMP 322, Spring 2024 (M. Joyner)

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. V parent; // output value of parent in spanning tree

4. boolean makeParent(V n) {
5. if (parent == null) { parent = n; return true; }
6. else return false; // return true if n became parent
7. } // makeParent

8. void compute() {
9. for (int i=0; i<neighbors.length; i++) {
10. final V child = neighbors[i];
11. if (child.makeParent(this))
12. child.compute(); // recursive call
13. }
14. } // compute
15. } // class V
16. . . . // main program
17. root.parent = root; // Use self-cycle to identify root
18. root.compute();
19. . . .

Exercise: Parallel Spanning Tree Algorithm using
object-based isolated construct

10

COMP 322, Spring 2024 (M. Joyner)

Minimum Spanning Tree
• For graphs that have edge weights

• Spanning tree with a minimum weight

• Sequential algorithms:

• Prim’s algorithm: greedy, grow a single tree by adding nodes closest to it

• Kruskal’s algorithm: greedy, add lightest edges that don’t create a cycle

• Boruvka’s algorithm: combination of Prim’s and Kruskal’s

• Can be parallelized

11

COMP 322, Spring 2024 (M. Joyner)12

1

2 3 4

6 5

10
1

5

8 3

1 1 6

2

4

Starting from empty T,
choose a vertex at
random and initialize

V = {1), E’ ={}

Prim’s Algorithm

COMP 322, Spring 2024 (M. Joyner)13

1

2 3 4

6 5

10
1

5

8 3

1 1 6

2

4

Choose the vertex u not in
V such that edge weight
from u to a vertex in V is
minimal (greedy!)

V={1,3} E’= {(1,3) }

Prim’s Algorithm

COMP 322, Spring 2024 (M. Joyner)14

1

2 3 4

6 5

10
1

5

8 3

1 1 6

2

4

Repeat until all vertices have
been chosen

Choose the vertex u not in V
such that edge weight from v to a
vertex in V is minimal (greedy!)

V= {1,3,4} E’= {(1,3),(3,4)}

V={1,3,4,5} E’={(1,3),(3,4),(4,5)}

….

V={1,3,4,5,2,6}

E’={(1,3),(3,4),(4,5),(5,2),(2,6)}

Prim’s Algorithm

COMP 322, Spring 2024 (M. Joyner)15

1

2 3 4

6 5

10
1

5

8 3

1 1 6

2

4

Repeat until all vertices have
been chosen

V={1,3,4,5,2,6}

E’={(1,3),(3,4),(4,5),(5,2),(2,6)}

Final Cost: 1 + 3 + 4 + 1 + 1 = 10

Prim’s Algorithm

COMP 322, Spring 2024 (M. Joyner)

• Select edges in order of increasing cost

• Accept an edge to expand tree or forest only if it does not cause a cycle

• Implementation using adjacency list, priority queues and disjoint sets

16

Kruskal’s Algorithm

COMP 322, Spring 2024 (M. Joyner)17

1

2 3 4

6 5

10
1

5

8 3

1 1 6

2

4

Kruskal’s Algorithm

COMP 322, Spring 2024 (M. Joyner)18

1

2 3 4

6 5

10
1

5

8 3

1 1 6

2

4

Kruskal’s Algorithm

COMP 322, Spring 2024 (M. Joyner)19

1

2 3 4

6 5

10
1

5

8 3

1 1 6

2

4

Kruskal’s Algorithm

COMP 322, Spring 2024 (M. Joyner)20

1

2 3 4

6 5

10
1

5

8 3

1 1 6

2

4

Kruskal’s Algorithm

COMP 322, Spring 2024 (M. Joyner)21

1

2 3 4

6 5

10
1

5

8 3

1 1 6

2

4

Kruskal’s Algorithm

COMP 322, Spring 2024 (M. Joyner)22

1

2 3 4

6 5

10
1

5

8 3

1 1 6

2

4

Kruskal’s Algorithm

COMP 322, Spring 2024 (M. Joyner)23

Boruvka’s Algorithm
• Combination of Prim’s and Kruskal’s

• Grow a tree (component) by picking the lightest edge connected to it, just like
Prim

• Connect the trees when the lightest edge is between them, just like Kruskal

• Growing of each tree can be done in parallel

• Component contraction
• Each component represented by a single node
• When connecting two components, contract the edge and make a single

node to represent the two

COMP 322, Spring 2024 (M. Joyner)24

Boruvka’s Algorithm

Animation: Randy Cornell, Texas State University

COMP 322, Spring 2024 (M. Joyner)25

Parallel Boruvka’s Algorithm
• Java threads or async tasks picking up components off the worklist
• You don’t want too many threads of tasks, tune for the machine
• Worklist has to allow concurrent access

• Grow components in parallel

• When inspecting the closest node to expand the component, have to
synchronize
• Other thread or task could be also accessing it
• Careful not to introduce deadlock

• When contracting an edge, have to synchronize

• When there’s only a single component left, you are done

