
COMP 322: Parallel and Concurrent Programming

Lecture 35: Parallel Prefix Sum

Mack Joyner
mjoyner@rice.edu

http://comp322.rice.edu

COMP 322 Lecture 35 April 2024

http://comp322.rice.edu

COMP 322, Spring 2024 (M. Joyner)

Beyond Sum/Reduce Operations —
Prefix Sum (Scan) Problem Statement

Given input array A, compute output array X as follows

• The above is an inclusive prefix sum since X[i] includes A[i]

• For an exclusive prefix sum, perform the summation for 0 <=j <i

• It is easy to see that inclusive prefix sums can be computed sequentially in O(n) time …
// Copy input array A into output array X

X = new int[A.length]; System.arraycopy(A,0,X,0,A.length);

// Update array X with prefix sums

for (int i=1 ; i < X.length ; i++) X[i] += X[i-1];

• … and so can exclusive prefix sums

2

COMP 322, Spring 2024 (M. Joyner)

An Inefficient Parallel Algorithm for Exclusive Prefix Sums
1. forall(0, X.length-1, (i) -> {
2. // computeSum() adds A[0..i-1]
3. X[i] = computeSum(A, 0, i-1);
4. }

Observations:

• Critical path length, CPL = O(log n)

• Total number of operations, WORK = O(n2)

• With P = O(n) processors, the best execution time that you can achieve is TP =
max(CPL, WORK/P) = O(n), which is no better than sequential!

3

COMP 322, Spring 2024 (M. Joyner)

How can we do better?
Assume that input array A = [3, 1, 2, 0, 4, 1, 1, 3]

Define scan(A) = exclusive prefix sums of A = [0, 3, 4, 6, 6, 10, 11, 12]

Hint:

• Compute B by adding pairwise elements in A to get B = [4, 2, 5, 4]

• Assume that we can recursively compute scan(B) = [0, 4, 6, 11]

• How can we use A and scan(B) to get scan(A)?

4

COMP 322, Spring 2024 (M. Joyner)

Remember the “Pointer Skipping” Idea?

• Set each node’s root to its parent
• For each node, set its root to its parent’s root, if it exists
• This can all be done in parallel using N tasks

5

COMP 322, Spring 2024 (M. Joyner)

• For each node’s root starts as its parent
• For each node, set its root to its parent’s root, if it exists
• This can all be done in parallel using N tasks

6

Remember the “Pointer Skipping” Idea?

COMP 322, Spring 2024 (M. Joyner)

• Again:
• For each node, set its root to its parent’s root, if it exists
• This can all be done in parallel using N tasks again
• Stop when no more updates can be done

7

Remember the “Pointer Skipping” Idea?

COMP 322, Spring 2024 (M. Joyner)

Another way of looking at the parallel algorithm
Observation: each prefix sum can be decomposed into reusable terms of power-of-2-size e.g.

Approach:

• Combine reduction tree idea from Parallel Array Sum with partial sum idea from Sequential
Prefix Sum

• Use an “upward sweep” to perform parallel reduction, while storing partial sum terms in
tree nodes

• Use a “downward sweep” to compute prefix sums while reusing partial sum terms stored in
upward sweep

8

COMP 322, Spring 2024 (M. Joyner)

Parallel Prefix Sum: Upward Sweep
(while calling scan recursively)

9

1. Upward sweep is just like Parallel Reduction, except that partial sums are also
stored along the way

2. Receive values from left and right children
3. Compute left+right and store in box
4. Send left+right value to parent

15

2

Input array, A:

4

6
15

5 4

9

COMP 322, Spring 2024 (M. Joyner)

1. Receive value from parent (root receives 0)
2. Send parent’s value to LEFT child (prefix sum for elements to left of left child’s

subtree)
3. Send parent’s value+ left child’s box value to RIGHT child (prefix sum for

elements to left of right child’s subtree)
4. Add A[i] to get inclusive prefix sum

+ A[i]

Exclusive prefix sums

Parallel Prefix Sum: Downward Sweep
(while returning from recursive calls to scan)

10

0

4

6
15

5 4

9

Inclusive prefix sums

COMP 322, Spring 2024 (M. Joyner)

Summary of Parallel Prefix Sum Algorithm

• Critical path length, CPL = O(log n)

• Total number of add operations, WORK = O(n)

• Optimal algorithm for P = O(n/log n) processors
—Adding more processors does not help

• Parallel Prefix Sum has several applications that go way beyond computing
the sum of array elements

• Parallel Prefix Sum can be used for any operation that is associative (need
not be commutative)

— In contrast, finish accumulators required the operator to be both associative
and commutative

11

COMP 322, Spring 2024 (M. Joyner)

Parallel Filter Operation
[Credits: David Walker and Andrew W. Appel (Princeton), Dan Grossman (U. Washington)]

Given an array input, produce an array output containing only elements such
that f(elt) is true, i.e., output = input.parallelStream().filter(f).toArray()

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
 f: is elt > 10
 output [17, 11, 13, 19, 24]

Parallelizable?
• Finding elements for the output is easy
• But getting them in the right place seems hard

12

COMP 322, Spring 2024 (M. Joyner)

Parallel prefix to the rescue
1. Parallel map to compute a bit-vector for true elements (can use Java streams)

input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector (not available in Java streams)
bitsum [0, 1, 1, 1, 1, 2, 2, 3, 4, 4]

3. Parallel map to produce the output (can use Java streams)
output [17, 11, 13, 19, 24]
 

13

output = new array of size bitsum[n-1] +1
FORALL(i=0; i < input.length; i++){
 if(bits[i]==1)
 output[bitsum[i]] = input[I];
}

COMP 322, Spring 2024 (M. Joyner)

Example Applications of Parallel Prefix Algorithm

• Prefix Max with Index of First Occurrence: given an input array A, output an
array X of objects such that X[i].max is the maximum of elements A[0…i] and
X[i].index contains the index of the first occurrence of X[i].max in A[0…i]

• Filter and Packing of Strings: given an input array A identify elements that
satisfy some desired property (e.g., uppercase), and pack them in a new
output array. (First create a 0/1 array for elements that satisfy the property,
and then compute prefix sums to identify locations of elements to be packed.)

14

