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Beyond Sum/Reduce Operations —
Prefix Sum (Scan) Problem Statement

Given input array A, compute output array X as follows

• The above is an inclusive prefix sum since X[i] includes A[i]

• For an exclusive prefix sum, perform the summation for 0 <=j <i

• It is easy to see that inclusive prefix sums can be computed sequentially in O(n) time …
// Copy input array A into output array X

X = new int[A.length]; System.arraycopy(A,0,X,0,A.length);

// Update array X with prefix sums

for (int i=1 ; i < X.length ; i++ ) X[i] += X[i-1];

• … and so can exclusive prefix sums
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An Inefficient Parallel Algorithm for Exclusive Prefix Sums
1. forall(0, X.length-1, (i) -> { 
2.    // computeSum() adds A[0..i-1]
3.    X[i] = computeSum(A, 0, i-1);
4. }

Observations:

• Critical path length, CPL = O(log n)

• Total number of operations, WORK = O(n2)

• With P = O(n) processors, the best execution time that you can achieve is TP = 
max(CPL, WORK/P) = O(n), which is no better than sequential!
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How can we do better?
Assume that input array A = [3, 1, 2, 0, 4, 1, 1, 3]

Define scan(A) = exclusive prefix sums of A = [0, 3, 4, 6, 6, 10, 11, 12]

Hint: 

• Compute B by adding pairwise elements in A to get B = [4, 2, 5, 4]

• Assume that we can recursively compute scan(B) = [0, 4, 6, 11]

• How can we use A and scan(B) to get scan(A)?
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Remember the “Pointer Skipping” Idea?

• Set each node’s root to its parent
• For each node, set its root to its parent’s root, if it exists
• This can all be done in parallel using N tasks
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• For each node’s root starts as its parent
• For each node, set its root to its parent’s root, if it exists
• This can all be done in parallel using N tasks
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• Again: 
• For each node, set its root to its parent’s root, if it exists
• This can all be done in parallel using N tasks again
• Stop when no more updates can be done
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Remember the “Pointer Skipping” Idea?
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Another way of looking at the parallel algorithm
Observation: each prefix sum can be decomposed into reusable terms of power-of-2-size e.g.

Approach: 

• Combine reduction tree idea from Parallel Array Sum with partial sum idea from Sequential 
Prefix Sum

• Use an “upward sweep” to perform parallel reduction, while storing partial sum terms in 
tree nodes

• Use a “downward sweep” to compute prefix sums while reusing partial sum terms stored in 
upward sweep
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Parallel Prefix Sum: Upward Sweep
(while calling scan recursively)
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1. Upward sweep is just like Parallel Reduction, except that partial sums are also 
stored along the way

2. Receive values from left and right children
3. Compute left+right and store in box
4. Send left+right value to parent

15
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1. Receive value from parent (root receives 0)
2. Send parent’s value to LEFT child (prefix sum for elements to left of left child’s 

subtree)
3. Send parent’s value+ left child’s box value to RIGHT child (prefix sum for 

elements to left of right child’s subtree)
4. Add A[i] to get inclusive prefix sum

+ A[i]

Exclusive prefix sums

Parallel Prefix Sum: Downward Sweep
(while returning from recursive calls to scan)
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Summary of Parallel Prefix Sum Algorithm

• Critical path length, CPL = O(log n)

• Total number of add operations, WORK = O(n)

• Optimal algorithm for P = O(n/log n) processors
—Adding more processors does not help

• Parallel Prefix Sum has several applications that go way beyond computing 
the sum of array elements

• Parallel Prefix Sum can be used for any operation that is associative (need 
not be commutative)

— In contrast, finish accumulators required the operator to be both associative 
and commutative
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Parallel Filter Operation
[Credits: David Walker and Andrew W. Appel (Princeton), Dan Grossman (U. Washington)]

Given an array input, produce an array output containing only elements such 
that f(elt) is true, i.e., output = input.parallelStream().filter(f).toArray()

Example:  input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
        f: is elt > 10
        output [17, 11, 13, 19, 24]

Parallelizable?
• Finding elements for the output is easy
• But getting them in the right place seems hard
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Parallel prefix to the rescue
1. Parallel map to compute a bit-vector for true elements (can use Java streams)

input  [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits    [ 1,  0, 0, 0,   1, 0,   1,   1, 0,   1]

2. Parallel-prefix sum on the bit-vector (not available in Java streams)
bitsum [0,  1, 1, 1,  1, 2,  2,  3, 4,  4]

3. Parallel map to produce the output (can use Java streams)
output [17, 11, 13, 19, 24]
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output = new array of size bitsum[n-1] +1
FORALL(i=0; i < input.length; i++){
  if(bits[i]==1)
    output[bitsum[i]] = input[I];
}
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Example Applications of Parallel Prefix Algorithm

• Prefix Max with Index of First Occurrence: given an input array A, output an 
array X of objects such that X[i].max is the maximum of elements A[0…i] and 
X[i].index contains the index of the first occurrence of X[i].max in A[0…i]

• Filter and Packing of Strings: given an input array A identify elements that 
satisfy some desired property (e.g., uppercase), and pack them in a new 
output array.  (First create a 0/1 array for elements that satisfy the property, 
and then compute prefix sums to identify locations of elements to be packed.)
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