!'_ Complexity and Accumulators

Corky Cartwright
Vivek Sarkar
Department of Computer Science
Rice University

‘_L Today’s goals

. Accounting for cost of computation
(complexity)

. Accumulating “history” using accumulators

COMP 211, Spring 2010

‘.L Example: Partial Sums

;; sums: (listOf number) -> (listOf number)

;; (sums alon) computes the partial sums for n; it returns a list of

;; numbers, psum, such that the ith element of psum is the sum of the
;; numbers preceding (and including) the ith element of alon e.g.,

;s (sums’'(12345))='(136 10 15)

(define (sums alon)
(cond [(empty? alon) empty]
[else
(cons (first alon)
(map (lambda (x) (+ x (first alon)))
(sums (rest alon))))]))

COMP 211, Spring 2010 3

Question: how many additions
ﬁ does function sums perform?

Reduction sequence:

. (listd)...=>...=>

..(list4 (+ 54))... =>

..(list49)...=>...=>
L(list3(+43)(+93))...=>...=>
L(list3712)...=>...=>

L(list2 (+3 2) (+7 2) (+12 2))...=>...=>
L(list25914)...=>...=>
L(list1(+#21)(+51) (+#9 1) (+14 1))...=> ... =>
(list136 10 15)

COMP 211, Spring 2010 4

‘-L Cost accounting

Measure computation cost in reduction steps
using our reduction semantics. Models actual

cost reasonably well.

. Consider three algorithms
. Cost-A(n) = 2*n3 + n? + 50
. Cost-B(n) = 3*n? + 100
. Cost-C(n) = 2n
- Which algorithm is best?
- Which algorithm works best for large n?
. Can we formalize this notion?

COMP 211, Spring 2010 5

‘_L Order of Complexity

. We'll say that Cost-X is “order £'(n))”, or
simply “O¢f (n))” (read “Big-O of f(n))”) if

. Cost-X(n) < factor * f(n) for sufficiently large n

. Examples:
. Cost-A(n)=2"n*+n?+1 Cost-Ais O(n°)
. Cost-B(n) = 3*n? + 10 Cost-B is O(n?)
. Cost-C(n) = 2n Cost-C is O(2")

COMP 211, Spring 2010

‘_L Famous "Complexity Classes'

O (1)
- O (logn)
- O (n)
- O *logn)
. O [m)
. O (1)
. 500
. 20

COMP 211, Spring 2010

constant-time (head, tail)
logarithmic (binary search)
linear (vector multiplication)
"n log n" (sorting)

quadratic (matrix addition)
cubic (matrix multiplication)
polynomial (...many! ...)
exponential (guess password)

‘_L Improving Performance

The sums function performs n*(n-1)/2
additions to compute partial sums for a list of
n numbers

. We can do much better than O(n?)!

. What information do we need to do better?

. This is basically the “lost history” in the recursive
call

COMP 211, Spring 2010 8

Accumulator version of same

i program

. Idea: as the list 1s successively decomposed
into first and rest, the sums function can

accumulate the sum of the numbers to the
left of rest.

. Template Instantiation:
(define (sums-help lon sum)
(cond [(empty? lon) ...]
[else ... (firstlon) ... sum ...
(sums-help (rest lon) ..)]))

COMP 211, Spring 2010 9

Accumulator version of same

i program

;; sums-help: (listOf number) number -> (listOf number)
;; Invariant: sum is the sum of the numbers that preceded alon in alonO
(define (sums-help alon sum)
(cond
[(empty? alon) empty]
[else
(local [(define new-sum (+ sum (first I)))]
(cons new-sum (sums-help (rest I) new-sum)))]))

;; sums: (listOf number) -> (listOf number)
(define (sums alon0) (sums-help alon0 0))

COMP 211, Spring 2010 10

Question: how many additions
does the accumulator version

* perform?

Reduction sequence:

(sums-help (list12345)0)=>...=>

L(+01)..=>.. .=

(cons 1 (sums-help (list2345)1))=>...=>
L(F12).=> .=

(cons 1 (cons 3 (sums-help (list 34 5) 3)))=>...=>
(+33)...=>...=

(cons 1 (cons 3 (cons 6 (sums-help (list4 5) 6)))) =>...=>
L(+64)...=>. . .=

(cons 1 (cons 3 (cons 6 (cons 10 (sums-help (list 5) 10))))) =>...=>
(+105)...=>...=>

(cons 1 (cons 3 (cons 6 (cons 10 (cons 15 empty)))))

COMP 211, Spring 2010 11

i Formulating an Accumulator

. If we decide to use an accumulator, we
need to answer three questions:

. What should the initial value for the
accumulator be?

. How will we modify the accumulator in
each recursive call? (What will we
“accumulate™?)

. How will we use the accumulator to
produce the final result?

COMP 211, Spring 2010 12

‘_L Nailve List Reversal

(define (rev 1)
(cond [(empty? |) empty]
else (append (rev (rest 1))

(list (first 1))]))

COMP 211, Spring 2010

13

i Reversal using an accumulator

* Invariant: ans is the reversed list of all items
;; that preceded | in 10

(define (rev-help | ans)
(cond [(empty? |) ans]
[else (rev-help (rest |) (cons (first) ans))]))

(define (fast-rev |0) (rev-help | empty))

COMP 211, Spring 2010 14

‘_L Added Expressivity

Code simplification using accumulators

Consider the list reverse function
. Takes '(12 34 5) and produces '(54321)

How did we write this function in the naive
version? Used append. Ugh.

What information did we use to do better?
. This 1s basically the “lost history” of the recursive call

Is this list reversal example really different from
the list accumulation example?

COMP 211, Spring 2010 15

i Naive List Flattening

;; (flatten: (genListOf symbol) -> (listOf symbol)
;; (flatten agl) returns a list of the symbols in order of appearance
;; (flatten '((@ b) c ((d))) ='(ab cd)
(define (flatten agl)
(cond [(empty? agl) empty]
[else (local [(define head (first agl))
(define tail (flatten (rest agl)))]
(cond [(empty? head) tail]
[(cons? head) (append (flatten head) tail)]
[else (cons head tail)]))]))

Note: we wrote this function so that the symbol type can be replaced by any
non-list type.

COMP 211, Spring 2010 16

Accumulator version

;; flatten-help: (genListOf symbol) (listOf symbol) -> (listOf symbol)
;; (flatten agl los) returns a list of the symbols in agl appended to los
;; (flatten '((ab) c ((d)) '(e))='(abcde)

- What is the invariant for the accumulator variable los?

(define (flatten-help agl los)
(cond [(empty? agl) los]
[else (local [(define head (first agl))
(define tail (flatten-help (rest agl) los))]
(cond [(empty? head) tail]
[(cons? head) (flatten-help head tail)]
[else (cons head tail)]))]))

COMP 211, Spring 2010

17

