
1

Complexity and Accumulators

Corky Cartwright
Vivek Sarkar

Department of Computer Science
Rice University

COMP 211, Spring 2010 2

Today’s goals
•  Accounting for cost of computation

(complexity)
•  Accumulating “history” using accumulators

COMP 211, Spring 2010 3

Example: Partial Sums
;; sums: (listOf number) -> (listOf number)
;; (sums alon) computes the partial sums for n; it returns a list of
;; numbers, psum, such that the ith element of psum is the sum of the
;; numbers preceding (and including) the ith element of alon e.g.,
;; (sums '(1 2 3 4 5)) = '(1 3 6 10 15)

(define (sums alon)
 (cond [(empty? alon) empty]
 [else
 (cons (first alon)
 (map (lambda (x) (+ x (first alon)))
 (sums (rest alon))))]))

Question: how many additions
does function sums perform?

Reduction sequence:
…(list 5)… => . . . =>
…(list 4 (+ 5 4))… =>
…(list 4 9)… => . . . =>
…(list 3 (+ 4 3) (+ 9 3))… => . . . =>
…(list 3 7 12)… => . . . =>
…(list 2 (+3 2) (+7 2) (+12 2))… => . . . =>
…(list 2 5 9 14)… => . . . =>
…(list 1 (+2 1) (+5 1) (+9 1) (+14 1))… => . . . =>
(list 1 3 6 10 15)

COMP 211, Spring 2010 4

COMP 211, Spring 2010 5

Cost accounting
•  Measure computation cost in reduction steps

using our reduction semantics. Models actual
cost reasonably well.

•  Consider three algorithms
•  Cost-A(n) = 2*n3 + n2 + 50
•  Cost-B(n) = 3*n2 + 100
•  Cost-C(n) = 2n

•  Which algorithm is best?
•  Which algorithm works best for large n?
•  Can we formalize this notion?

COMP 211, Spring 2010 6

Order of Complexity
•  We'll say that Cost-X is “order f (n))”, or

simply “O(f (n))” (read “Big-O of f (n))”) if
•  Cost-X(n) < factor * f (n) for sufficiently large n

•  Examples:
•  Cost-A(n) = 2*n3 + n2 + 1 Cost-A is O(n3)
•  Cost-B(n) = 3*n2 + 10 Cost-B is O(n2)
•  Cost-C(n) = 2n Cost-C is O(2n)

COMP 211, Spring 2010 7

Famous "Complexity Classes"
•  O (1) constant-time (head, tail)
•  O (log n) logarithmic (binary search)
•  O (n) linear (vector multiplication)
•  O (n * log n) "n log n" (sorting)
•  O (n2) quadratic (matrix addition)
•  O (n3) cubic (matrix multiplication)
•  nO(1) polynomial (…many! …)
•  2O(n) exponential (guess password)

COMP 211, Spring 2010 8

Improving Performance
•  The sums function performs n*(n-1)/2

additions to compute partial sums for a list of
n numbers

•  We can do much better than O(n2)!
•  What information do we need to do better?

•  This is basically the “lost history” in the recursive
call

COMP 211, Spring 2010 9

Accumulator version of same
program

•  Idea: as the list is successively decomposed
into first and rest, the sums function can
accumulate the sum of the numbers to the
left of rest.	

•  Template Instantiation:���
(define (sums-help lon sum)
 (cond [(empty? lon) …]
 [else … (first lon) … sum …
 (sums-help (rest lon) ..)]))	

COMP 211, Spring 2010 10

Accumulator version of same
program

;; sums-help: (listOf number) number -> (listOf number)
;; Invariant: sum is the sum of the numbers that preceded alon in alon0
(define (sums-help alon sum)
 (cond
 [(empty? alon) empty]
 [else
 (local [(define new-sum (+ sum (first l)))]
 (cons new-sum (sums-help (rest l) new-sum)))]))

;; sums: (listOf number) -> (listOf number)
(define (sums alon0) (sums-help alon0 0))

Question: how many additions
does the accumulator version
perform?

Reduction sequence:
(sums-help (list 1 2 3 4 5) 0) => . . . =>
…(+ 0 1)… => . . . =>
(cons 1 (sums-help (list 2 3 4 5) 1)) => . . . =>
…(+ 1 2)… => . . . =>
(cons 1 (cons 3 (sums-help (list 3 4 5) 3))) => . . . =>
…(+ 3 3)… => . . . =>
(cons 1 (cons 3 (cons 6 (sums-help (list 4 5) 6)))) => . . . =>
…(+ 6 4)… => . . . =>
(cons 1 (cons 3 (cons 6 (cons 10 (sums-help (list 5) 10))))) => . . . =>
…(+ 10 5)… => . . . =>
(cons 1 (cons 3 (cons 6 (cons 10 (cons 15 empty)))))

COMP 211, Spring 2010 11

COMP 211, Spring 2010 12

Formulating an Accumulator
•  If we decide to use an accumulator, we

need to answer three questions:
•  What should the initial value for the

accumulator be?
•  How will we modify the accumulator in

each recursive call? (What will we
“accumulate”?)

•  How will we use the accumulator to
produce the final result?

COMP 211, Spring 2010 13

Naïve List Reversal
(define (rev l)
 (cond [(empty? l) empty]
 [else (append (rev (rest l))
 (list (first l))]))

COMP 211, Spring 2010 14

Reversal using an accumulator
;; Invariant: ans is the reversed list of all items
;; that preceded l in l0

(define (rev-help l ans)
 (cond [(empty? l) ans]
 [else (rev-help (rest l) (cons (first l) ans))]))

(define (fast-rev l0) (rev-help l empty))

COMP 211, Spring 2010 15

Added Expressivity
•  Code simplification using accumulators	

•  Consider the list reverse function	

•  Takes '(1 2 3 4 5) and produces '(5 4 3 2 1)

•  How did we write this function in the naïve
version? Used append. Ugh.	

•  What information did we use to do better?	

•  This is basically the “lost history” of the recursive call	

•  Is this list reversal example really different from
the list accumulation example?

COMP 211, Spring 2010 16

Naïve List Flattening
•  ;; (flatten: (genListOf symbol) -> (listOf symbol)

;; (flatten agl) returns a list of the symbols in order of appearance
;; (flatten '((a b) c ((d))) = '(a b c d)

•  (define (flatten agl)
 (cond [(empty? agl) empty]
 [else (local [(define head (first agl))
 (define tail (flatten (rest agl)))]
 (cond [(empty? head) tail]
 [(cons? head) (append (flatten head) tail)]
 [else (cons head tail)]))]))

•  Note: we wrote this function so that the symbol type can be replaced by any
non-list type.	

COMP 211, Spring 2010 17

Accumulator version
;; flatten-help: (genListOf symbol) (listOf symbol) -> (listOf symbol)
;; (flatten agl los) returns a list of the symbols in agl appended to los
;; (flatten '((a b) c ((d)) '(e)) = '(a b c d e)

;; What is the invariant for the accumulator variable los?

 (define (flatten-help agl los)
 (cond [(empty? agl) los]
 [else (local [(define head (first agl))
 (define tail (flatten-help (rest agl) los))]
 (cond [(empty? head) tail]
 [(cons? head) (flatten-help head tail)]
 [else (cons head tail)]))]))

