
1

Exception Handling and First-class
Functions

Corky Cartwright
Vivek Sarkar

Department of Computer Science
Rice University

COMP 211, Spring 2010 2

Errors and Exceptions in Java
•  In Java, a common supertype, Throwable, is

used to encompass all error values and
exception values.

Case 2

Case 3

Case 1

Figure source: http://java.sun.com/docs/books/tutorial/essential/exceptions/throwing.html

Case 1: RuntimeException
•  Used for error conditions that a program may want to

handle, but are not explicitly part of a method’s contract
e.g.,

•  NullPointerException	
•  IndexOutOfBoundsException	
•  ArithmeticException (e.g., divide by zero)	
•  NegativeArraySizeException	
•  ArrayStoreException	
•  ClassCastException	
•  IllegalArgumentException	

•  We will primarily use RuntimeException (Case 1) in this
course except when the use of a library dictates the use of
Case 2 or Case 3

COMP 211, Spring 2010 3

Example
 Execution of method foo() in class T1
throws an ArithmeticException
when x = 0

class T1 {	
 int x;	
 . . .	
 int foo() { 	
 return 100 / x;	
 }	
} 	

COMP 211, Spring 2010 4

Unhandled Exceptions
•  An Unhandled Exception results in program

exit with a stack trace e.g.,
 Exception in thread "main"
java.lang.ArithmeticException: / by zero 	
	at T1.foo(T1.java:50)	
 . . .

•  The line numbers in the stack trace can
help you locate the source of the error

COMP 211, Spring 2010 5

Handled Exceptions
•  The programmer has the option of handling

exceptions in Java with a try-catch statement e.g.,

class T1 {	
 int x;	
 . . .	
 int foo() { 	
 int n;	
 try { n = 100 / x; } // scope of exception handler	
 catch (ArithmeticException e) 	
 {n = Integer.MAX_VALUE;} // handler for arith exceptions	
 return n;	
 } } 	

COMP 211, Spring 2010 6

Exception Propagation

•  Exceptions are propagated up the call chain until a
handler is found; if none an error message is
printed on the console	

class T2 {	
 int x;	
 int baz() { return 100 / x; }	
 int foo() { 	
 int n;	
 try { baz(); } // scope of exception handler	
 catch (ArithmeticException e) 	
 {n = Integer.MAX_VALUE;} // handler for arith exceptions	
 return n;	
 } } 	

Food for Thought
•  What would you have to do to

propagate errors up a call chain in a
language that did not have support for
exception handling?

•  It is possible to convert any Java
program into one that never prints an
exception on the console. How?

COMP 211, Spring 2010 8

Throwing Exceptions Explicitly

COMP 211, Spring 2010 9

•  The programmer also has the option of throwing
instances of RuntimeException for user-defined
errors e.g.,

class T3 {	
 int x;	
 . . .	
 float bar(float y) { 	
 // throw ArithmeticException if y < 0	
 if (y < 0) throw new ArithmeticException(“Negative arg”);	
 return Math.sqrt(y);	
 }	
} 	

Argument of throw statement
must be of type Throwable

COMP 211, Spring 2010 10

Exception Objects

•  In Java, exceptions are conventional objects, and
can be created by expressions of the form

 new <exception-class>(<arg1>, ..., <argn>)	

•  Examples���
throw new IllegalArgumentException 	

	("max applied to an empty list")	

throw new java.util.NoSuchElementException
	("no more elements")	

COMP 211, Spring 2010 11

Type Casts and ClassCastException
•  Java supports type casts (coercions) for cases when the

declared or inferred type of an expression is weaker than what
is required for a particular computation

•  (<type>) <expr> simply converts the type of <expr> to
<type> for type-checking purposes. If the value of <expr>
does not have type <type>, the computation throws a
ClassCastException.

•  If the cast needs to be performed repeatedly, it is also possible
to assign <expr> to a new variable declared to be of <type>	

•  Example: consider the merge method on IntList for today's
homework (HW7) written using the conventional Scheme
solution.

COMP 211, Spring 2010 12

merge Example
abstract class IntList { 	
 IntList cons(Comparable n) { return new ConsIntList(n, this); }	
 abstract IntList merge(IntList other);	
}	

class EmptyIntList extends IntList { 	
 static EmptyIntList ONLY = new EmptyIntList();	
 private EmptyIntList() { }	
 IntList merge(IntList other) { return other;}	
}	

class ConsIntList extends IntList {	
 int first;	
 IntList rest;	
 IntList merge(IntList other) {	
 if (other == EmptyIntList.ONLY) return this;	

	ConsIntList o = (ConsIntList) other; // cast operation 	
 if (first < o.first()) return rest.merge(o).cons(first);	
 else return merge(o.rest()).cons(o.first());	
 }	
}	

Cast needed because first() can
only be invoked on ConsIntList

COMP 211, Spring 2010 13

Casting vs. Compiler Type-
Checking

•  The type-checking in the Java compiler disallows
casts
 (<type>) <expr>  
where <type> is an object type and the static type of
<expr> and <type> do not overlap (other than
null)

•  For example
 EmptyIntList e = new EmptyIntList();
	ConsIntList o = (ConsIntList) e;	
 will result in a compile-time error

COMP 211, Spring 2010 14

Cases 2 and 3
•  Case 2: subtype of Exception, but not a subtype

of RuntimeException (also called “checked
exceptions”)

•  Case 3: Error

Case 2

Case 3

Case 1

Case 2: Checked Exceptions
•  Used for error conditions that a program may want to

handle, and that are also explicitly part of a method’s
contract in the throws clausee.g.,

•  void foo() throws MyException { . . . }	

•  The Java compiler enforces the following rules on
checked exceptions

•  Every method that throws a checked exception must advertise it in
the throws clause in its method definition (contract)

•  Every method that calls a method that advertises a checked
exception must either handle that exception (with try and catch) or
must in turn advertise that exception in its own throws clause.

COMP 211, Spring 2010 15

Case 3: Errors
•  Subtypes of Error are used to identify error conditions

that normal programs (including all your programs!)
are not expected to handle

•  One direct subtype of Error is VirtualMachineError,
which in turn includes the following direct subtypes

•  InternalError
•  OutOfMemoryError
•  StackOverflowError
•  UnknownError

•  A VirtualMachineError is “thrown to indicate that the
Java Virtual Machine is broken or has run out of
resources necessary for it to continue operating”

COMP 211, Spring 2010 16

COMP 211, Spring 2010 17

Encoding First-class Functions in Java
•  Java methods are not data values; they

cannot be used as values.
•  But java classes include methods so we

can pass methods (functions) by
passing an appropriate class
implementing an interface type that is
designed exclusively to represent Java
functions.

•  Example: Scheme map

COMP 211, Spring 2010 18

Interfaces for Representing
Functions

•  For accurate typing, we need different interfaces for
different arities. With generics, we can define
parameterized interfaces for each arity. For now, we
will have to define separate interfaces for each
desired typing.

map example:

interface UnaryFun {	
 Object apply(Object arg); // Object -> Object	
 }	

 abstract class ObjectList { 	
 ObjectList cons(Object n) { return new ConsObjectList(n, this); }	
 abstract ObjectList map(UnaryFun f);	
 }	
 ...	

COMP 211, Spring 2010 19

 Representing Specific
Funcions

•  For each function that we want to use a value, we must define a
class, preferably a singleton. Since the class has no fields, all
instances are effectively identical.

•  Java provides a lightweight notation for singleton classes called
anonymous classes. Moreover these classes can refer to fields
and final method variables that are in scope.

•  Anonymous class notation:

new <type>() {  
 <member1>  
 ...  
 <membern>  
}	

COMP 211, Spring 2010 20

Anonymous Class Example

new UnaryFun() {  
 Object apply(Object arg) { 	

 // Return a list containing arg  
 return EmptyObjectList.ONLY.cons(arg);  
 }  
}  

 There are pending proposals to provide better
notation for lambda abstractions.	

COMP 211, Spring 2010 21

Free Variables in Anonymous
Classes

•  What do free variables mean inside anonymous
classes? What do they mean in λ-expressions?	

•  In Java, the free variables can be either:	

•  fields, or	

•  local (method) variables.	

•  Use them in doing the filter problem in HW8.	

COMP 211, Spring 2010 22

Another Anonymous Class
Example

. . .	
final Integer negativeOne = new Integer(-1);	
ObjectList ol1 = . . .;	
ObjectList ol2 = ol1.map(
 new UnaryFun() {  

 Object apply(Object arg) { 	
 if (arg.predicate())  

 return EmptyObjectList.ONLY.cons(arg);	
 else	
 return negativeOne; // Free variable  

 }  
 }	

);  

