Exception Handling and First-class

!'_ Functions

Corky Cartwright
Vivek Sarkar
Department of Computer Science
Rice University

*Errors and Exceptions in Java

. In Java, a common supertype, Throwable, is
used to encompass all error values and

exception values.

Object
|
Throwable
| : |
Error Exception
1 Case 1

|

Case 3 { “\ .] : ’ I‘l_ \\\ .l 1 RuntimeEKeption
) \\\ | l

Case2 LI >

Figure source: http.://java.sun.com/docs/books/tutorial/essential/exceptions/throwing.html

COMP 211, Spring 2010

‘_L Case 1: RuntimeException

Used for error conditions that a program may want to

handle, but are not explicitly part of a method’s contract
e.g.,
. NullPointerException
IndexOutOfBoundsException
ArithmeticException (e.g., divide by zero)
NegativeArraySizeException
ArrayStoreException

ClassCastException
I1legalArgumentException

We will primarily use RuntimeException (Case 1) in this
course except when the use of a library dictates the use of

Case 2 or Case 3

COMP 211, Spring 2010 3

* Example

Execution of method foo() in class T1
throws an ArithmeticException
when x =0

class T1 {
int x;

int foo() {
return 100 / x;

¥
¥

COMP 211, Spring 2010

‘_L Unhandled Exceptions

- An Unhandled Exception results in program
exit with a stack trace e.q.,

Exception 1n thread "main"
java.lang.ArithmeticException: / by zero

at T1l.foo(T1l.java:50)

. The line numbers in the stack trace can
help you locate the source of the error

COMP 211, Spring 2010 >

ﬁ Handled Exceptions

The programmer has the option of handling
exceptions in Java with a try-catch statement e.g.,

class T1 {
int x;

int foo() {
int n;
try { n =100 / x; } // scope of exception handler
catch (ArithmeticException e)
{n = Integer .MAX_VALUE;} // handler for arith exceptions
return n;

I

COMP 211, Spring 2010

i Exception Propagation

. EXxceptions are propagated up the call chain until a
handler is found; if none an error message is

printed on the console
class T2 {
int x;
int baz() { return 100 / x; }
int foo() {
int n;
try { baz(); } // scope of exception handler
catch (ArithmeticException e)
{n = Integer .MAX_VALUE;} // handler for arith exceptions
return n;

I

i Food for Thought

. What would you have to do to
propagate errors up a call chain in a

language that did not have support for
exception handling?

. It is possible to convert any Java

program into one that never prints an
exception on the console. How?

COMP 211, Spring 2010

* Throwing Exceptions Explicitly

The programmer also has the option of throwing
instances of RuntimeException for user-defined
errors e.g.,

class T3 {
int x;

float bar(float y) {
// throw ArithmeticException if y < 0
if (y < @) throw new ArithmeticException(“Negative arg”);
return Math.sqgrt(y);

}

COMP 211, Spring 2010 9

ﬁException Objects

In Java, exceptions are conventional objects, and
can be created by expressions of the form

new <exception-class>(<arg,>, ..., <arg,>)

. Examples
throw new IllegalArgumentException
("max applied to an empty list")

throw new java.util.NoSuchElementException
("no more elements")

COMP 211, Spring 2010 10

Type Casts and ClassCastException

Java supports type casts (coercions) for cases when the

declared or inferred type of an expression is weaker than what
is required for a particular computation

(<type>) <expr> simply converts the type of <expr> to
<type> for type-checking purposes. If the value of <expr>
does not have type <type>, the computation throws a
ClassCastException.

If the cast needs to be performed repeatedly, it is also possible
to assign <expr> to a new variable declared to be of <type>

Example: consider the merge method on IntList for today's
homework (HW7) written using the conventional Scheme
solution.

COMP 211, Spring 2010 11

merge Example

abstract class IntlList {
IntList cons(Comparable n) { return new ConsIntList(n, this); }
abstract IntList merge(IntList other);

}

class EmptyIntList extends IntList {
static EmptyIntList ONLY = new EmptyIntList();
private EmptyIntList() { }
IntList merge(IntList other) { return other;}
}

class ConsIntlList extends IntLis

int first;

IntList rest;

IntList merge(IntList othe
if (other == EmptyIntLigt.ONLY) return this;
ConsIntList o = (ConsIntList) other; // cast operation
if (first < o.first()) return rest.merge(o).cons(first);
else return merge(o.rest()).cons(o.first());

COMP 211, Spring 2010 12

Casting vs. Compiler Type-
Checking

. The type-checking in the Java compiler disallows
casts
(<type>) <expr>
where <type> is an object type and the static type of
<e)1(€r'> and <type> do not overlap (other than
null)

For example
EmptyIntList e = new EmptylIntlList();

ConsIntList o = (ConsIntList) e;
will result in a compile-time error

COMP 211, Spring 2010 13

ﬁ Cases 2 and 3

. Case 2: subtype of Exception, but not a subtype
of RuntimeException (also called “checked
exceptions”)

. Case 3: Error

Object
|
Throwable
|
| |
Error Exception ‘
I Case 1
S I ~N— RuntimeElxception
Case 3 || ... i [N

Case 2 u_ -

COMP 211, Spring 2010 14

‘-L Case 2: Checked Exceptions

Used for error conditions that a program may want to
handle, and that are also explicitly part of a method'’s

contract in the throws clausee.g.,
void foo() throws MyException { . . . }

The Java compiler enforces the following rules on
checked exceptions

Every method that throws a checked exception must advertise it in
the throws clause in its method definition (contract)

Every method that calls a method that advertises a checked
exception must either handle that exception (with try and catch) or
must in turn advertise that exception in its own throws clause.

COMP 211, Spring 2010 15

Case 3: Errors

Subtypes of Error are used to identify error conditions
that normal programs (including all your programs!)
are not expected to handle

One direct subtype of Error is VirtualMachineError,
which in turn includes the following direct subtypes
. InternalError
. OutOfMemoryError
. StackOverflowError
. UnknownError

A VirtualMachineError is “thrown to indicate that the

Java Virtual Machine is broken or has run out of
resources necessary for it to continue operating”

COMP 211, Spring 2010 16

