
1

Exception Handling and First-class
Functions

Corky Cartwright
Vivek Sarkar

Department of Computer Science
Rice University

COMP 211, Spring 2010 2

Errors and Exceptions in Java
•  In Java, a common supertype, Throwable, is

used to encompass all error values and
exception values.

Case 2

Case 3

Case 1

Figure source: http://java.sun.com/docs/books/tutorial/essential/exceptions/throwing.html

Case 1: RuntimeException
•  Used for error conditions that a program may want to

handle, but are not explicitly part of a method’s contract
e.g.,
•  NullPointerException	
•  IndexOutOfBoundsException	
•  ArithmeticException (e.g., divide by zero)	
•  NegativeArraySizeException	
•  ArrayStoreException	
•  ClassCastException	
•  IllegalArgumentException	

•  We will primarily use RuntimeException (Case 1) in this
course except when the use of a library dictates the use of
Case 2 or Case 3

COMP 211, Spring 2010 3

Example
 Execution of method foo() in class T1
throws an ArithmeticException
when x = 0

class T1 {	
 int x;	
 . . .	
 int foo() { 	
 return 100 / x;	
 }	
} 	

COMP 211, Spring 2010 4

Unhandled Exceptions
•  An Unhandled Exception results in program

exit with a stack trace e.g.,
 Exception in thread "main"
java.lang.ArithmeticException: / by zero 	
	at T1.foo(T1.java:50)	
 . . .

•  The line numbers in the stack trace can
help you locate the source of the error

COMP 211, Spring 2010 5

Handled Exceptions
•  The programmer has the option of handling

exceptions in Java with a try-catch statement e.g.,

class T1 {	
 int x;	
 . . .	
 int foo() { 	
 int n;	
 try { n = 100 / x; } // scope of exception handler	
 catch (ArithmeticException e) 	
 {n = Integer.MAX_VALUE;} // handler for arith exceptions	
 return n;	
 } } 	

COMP 211, Spring 2010 6

Exception Propagation

•  Exceptions are propagated up the call chain until a
handler is found; if none an error message is
printed on the console	

class T2 {	
 int x;	
 int baz() { return 100 / x; }	
 int foo() { 	
 int n;	
 try { baz(); } // scope of exception handler	
 catch (ArithmeticException e) 	
 {n = Integer.MAX_VALUE;} // handler for arith exceptions	
 return n;	
 } } 	

Food for Thought
•  What would you have to do to

propagate errors up a call chain in a
language that did not have support for
exception handling?

•  It is possible to convert any Java
program into one that never prints an
exception on the console. How?

COMP 211, Spring 2010 8

Throwing Exceptions Explicitly

COMP 211, Spring 2010 9

•  The programmer also has the option of throwing
instances of RuntimeException for user-defined
errors e.g.,

class T3 {	
 int x;	
 . . .	
 float bar(float y) { 	
 // throw ArithmeticException if y < 0	
 if (y < 0) throw new ArithmeticException(“Negative arg”);	
 return Math.sqrt(y);	
 }	
} 	

Argument of throw statement
must be of type Throwable

COMP 211, Spring 2010 10

Exception Objects

•  In Java, exceptions are conventional objects, and
can be created by expressions of the form

 new <exception-class>(<arg1>, ..., <argn>)	

•  Examples���
throw new IllegalArgumentException 	

	("max applied to an empty list")	

throw new java.util.NoSuchElementException
	("no more elements")	

COMP 211, Spring 2010 11

Type Casts and ClassCastException
•  Java supports type casts (coercions) for cases when the

declared or inferred type of an expression is weaker than what
is required for a particular computation

•  (<type>) <expr> simply converts the type of <expr> to
<type> for type-checking purposes. If the value of <expr>
does not have type <type>, the computation throws a
ClassCastException.

•  If the cast needs to be performed repeatedly, it is also possible
to assign <expr> to a new variable declared to be of <type>	

•  Example: consider the merge method on IntList for today's
homework (HW7) written using the conventional Scheme
solution.

COMP 211, Spring 2010 12

merge Example
abstract class IntList { 	
 IntList cons(Comparable n) { return new ConsIntList(n, this); }	
 abstract IntList merge(IntList other);	
}	

class EmptyIntList extends IntList { 	
 static EmptyIntList ONLY = new EmptyIntList();	
 private EmptyIntList() { }	
 IntList merge(IntList other) { return other;}	
}	

class ConsIntList extends IntList {	
 int first;	
 IntList rest;	
 IntList merge(IntList other) {	
 if (other == EmptyIntList.ONLY) return this;	

	ConsIntList o = (ConsIntList) other; // cast operation 	
 if (first < o.first()) return rest.merge(o).cons(first);	
 else return merge(o.rest()).cons(o.first());	
 }	
}	

Cast needed because first() can
only be invoked on ConsIntList

COMP 211, Spring 2010 13

Casting vs. Compiler Type-
Checking

•  The type-checking in the Java compiler disallows
casts
 (<type>) <expr>  
where <type> is an object type and the static type of
<expr> and <type> do not overlap (other than
null)

•  For example
 EmptyIntList e = new EmptyIntList();
	ConsIntList o = (ConsIntList) e;	
 will result in a compile-time error

COMP 211, Spring 2010 14

Cases 2 and 3
•  Case 2: subtype of Exception, but not a subtype

of RuntimeException (also called “checked
exceptions”)

•  Case 3: Error

Case 2

Case 3

Case 1

Case 2: Checked Exceptions
•  Used for error conditions that a program may want to

handle, and that are also explicitly part of a method’s
contract in the throws clausee.g.,
•  void foo() throws MyException { . . . }	

•  The Java compiler enforces the following rules on
checked exceptions
•  Every method that throws a checked exception must advertise it in

the throws clause in its method definition (contract)
•  Every method that calls a method that advertises a checked

exception must either handle that exception (with try and catch) or
must in turn advertise that exception in its own throws clause.

COMP 211, Spring 2010 15

Case 3: Errors
•  Subtypes of Error are used to identify error conditions

that normal programs (including all your programs!)
are not expected to handle

•  One direct subtype of Error is VirtualMachineError,
which in turn includes the following direct subtypes
•  InternalError
•  OutOfMemoryError
•  StackOverflowError
•  UnknownError

•  A VirtualMachineError is “thrown to indicate that the
Java Virtual Machine is broken or has run out of
resources necessary for it to continue operating”

COMP 211, Spring 2010 16

