
1

Full Java, Arrays, Mutation

Corky Cartwright
Vivek Sarkar

Department of Computer Science
Rice University

COMP 211, Spring 2010 2

What are Language Levels Hiding?
•  In principle, nothing…

Java could have supported a notion of immutable (single
assignment) classes, and DrJava Intermediate Level
could just have been a subset of Java.

•  But Java is what it is …
•  Transforming DrJava IL code to full Java code:

•  Explicit constructors
•  Explicit accessors
•  Explicit overriding of toString()
•  Explicit overriding of equals
•  Explicit overriding of hashCode()

Discussed in today’s class

COMP 211, Spring 2010 3

Explicit Constructors
•  A constructor definition has the form:

<ClassName>(arg1, …, argn) {  
 <optional super call on superclass constructor>  
 <code body that initializes instance fields of class>  
}	

•  All fields not initialized in explicit constructors are set to the default
value for their respective type: 0 for all primitive number/char types,
false for boolean and null for all object (reference) types.

•  Multiple constructors are permissible (static overloading with
different signatures and in different subtypes).

•  If no explicit constructors are provided, Java automatically
generates a default 0-ary constructor with an empty body.

COMP 211, Spring 2010 4

Explicit Accessors
•  An accessor definition is an ordinary instance

method definition of the form:
<accessorName>() { return <fieldName>; }	

•  The choice of <accessorName> is arbitrary. We
recommend using the corresponding <fieldName> .
Another common convention is get<fieldName>.

•  Instance fields should never be public.

COMP 211, Spring 2010 5

Explicit Overriding of toString
•  The default definition of toString, which has

signature
public String toString();  
is awful: <className>@<hashCode>.

•  Why is toString important? This representation is
used anytime that an object is printed, e.g. in many
testing contexts.

Recap of Scheme Vectors
(Lecture 16)

•  (vector V-0 ... V-n) creates a
vector with n+1 elements, V-0 through V-n

•  (vector-length V) returns the number
of items in vector V

•  Results in an error if V is not a vector

•  (vector-ref V i) returns the ith item in
vector V

•  Results in an error if V is not a vector or i is not
a number or i < 0 or i >= (vector-length V)

COMP 211, Spring 2010 6

COMP 211, Spring 2010 7

Java Arrays
•  An array of T is a contiguous sequence of data values of type T . The

length of the array is fixed when the array is created.
•  The Java type for an array of T is written as T[]. Arrays are a

special form of object. The array class cannot be extended, but arrays
can be used anywhere arbitrary objects can be used. When an array
is allocated, the size of the array is inserted between the square
brackets: new int[17] . By default, the elements of the array are
initialized to the default value for the element type (typically zero or
null).

•  An alternate syntax for the new operation on arrays new int[] {0,1,2}
explicitly lists the initial contents of the array and leaves the length
implicit.

•  NOTE: Arrays are not supported at the Intermediate Level of DrJava

COMP 211, Spring 2010 8

Java Arrays (contd)
•  To extract an element from an array a, we simply use the subscript

operation [index] where index is an integer expression with a value in
the range 0…n-1, where n is the length of the array. For example,
 new int[] {0,1,2} [0] => 0  
 new int[] {0,1,2} [1] => 1  
 new int[] {0,1,2} [3] => ArrayIndexOutOfBoundsException	

•  To update an array, you can use an array subscript in the left-hand
side of a conventional assignment statement:
 int[] a = new int[2];  
 a[0] = 0;  
 a[1] = 1;	

•  The meanings of equals and toString in array classes are the
standard Object defaults.

•  Beware. equals means object identity and toString prints L<eltType>@address, where
eltType is a Java abbreviation for the element type and address is the hashCode of
the object expressed in hexadecimal.

COMP 211, Spring 2010 9

Java Arrays (contd)
•  The only interesting member of array classes is the field length

•  NOTE: collection classes typically use a size() method instead.

•  Since the array class cannot be extended and the default members of
the class provide little functionality beyond array in C, manyt Java
programmers use ArrayList (preferred) or Vector (archaic) instead.

•  To explain how to write clean code for processing arrays, we identify
them with lists and use some cleverness in representing the tails of
arrays.

•  It is straightforward to write tail-recursive code to perform array
computations from the perspective that arrays are restricted lists. But to
produce good array code in Java we must go one step farther and
convert that tail-recursive code to loop code.

COMP 211, Spring 2010 10

Recipes for Processing Arrays

•  Assume that we want to sum the elements of an int[] array. We can express the
naive solution using structural recursion as follows:
class ArrayUtil {  
 public static int sum(int[] a) { return sumHelp(a, 0); }  
 /** sumHelp(a, i) sums a[i],..,a[a.length - 1] */  
 public static int sumHelp(int[] a, int i) {  
 if (i >= a.length) then return 0;  
 else return a[i] + sumHelp(a, i+1);  
 }  
}  
We introduced a help function because auxiliary arguments are required to describe list tails.	

•  We can improve this naïve program by converting it to tail-recursive form:���
class ArrayUtil {  
 public static int sum(int[] a) { return sumHelp(a, 0, 0); }  
 /** Returns the sum of A[0],…,A[a.length-1] given 0 <= i < a.length  
 and accum = A[0],…A[i-1] */  
 public static int sumHelp(int[] a, int i, int accum) {  
 if (i >= a.length) return accum;  
 else return sumHelp(a, i+1, a[i] + accum);  
 }  
} 	

COMP 211, Spring 2010 11

Tail Recursion Is Not Enough!
•  Java does not generally optimize tail calls (it is

implementation dependent and unsupported in
Sun JVMs which means you cannot rely on tail
recursion.) In my opinion, this was a grievous
error in the definition of Java (an opinion shared
by Guy Steele who wrote the original edition of
the JLS).

•  Implication: must use Java loops instead of tail
recursive help functions to get good
performance and memory utilization.

COMP 211, Spring 2010 12

Connection between Loops and Tail
Recursion

•  What is a while loop? The code
 while (test) update  
evaluates the boolean expression test and falls through to the next
statement if test is false. Otherwise, it evaluates update and
executes the loop again.

•  If we model mutations in the code containing the while loop as
changes to fields of the enclosing object, then the while loop is
equivalent to calling a method
void whileFun() {  
if (! test) return;  
else {  
 update;  
 whileFun();  
} 	

•  Note that this function template is simply a restricted form of tail
recursion. Let's convert our sum function to while loop form. The
state will be the pair of variables (i, accum) formulated as
parameters in the tail recursive code.

COMP 211, Spring 2010 13

Loops and Tail Recursion
•  Given���

 class ArrayUtil {  
 public static int sum(int[] a) { return sumHelp(a, 0, 0); }  
 /** Returns the sum of A[0],…,A[a.length-1] given 0 <= i < a.length  
 and accum = A[0],…A[i-1] */  
 public static int sumHelp(int[] a, int i, int accum) {  
 if (i >= a.length) return accum;  
 else return sumHelp(a, i+1, a[i] + accum); /* update i, accum */  
 }  
} 	

•  The same code in loop form (no recursion):���
 class ArrayUtil {  
 public static int sum(int[] a) {  
 /** Returns the sum of A[0],…,A[a.length-1] */  
 accum = 0; i = 0; /* bind parms i, accum */  
 /* Invariant: accum = a[0] + … + a[I-1] */  
 while (i < a.length) {  
 accum = accum + a[i]; i++ /* update i, accum */  
 }  
 return accum;  
 }  
 }  

COMP 211, Spring 2010 14

Using a for loop instead of while

•  In Java/C���
 for (init; test; incr) body 	

•  abbreviates  
 init;  
 while (test) {  
 body;  
 incr;  
 }	

•  Hence, we can rewrite our loop:���
 class ArrayUtil {  
 public static int sum(int[] a) {  
 /** Returns the sum of A[0],…,A[a.length-1] */  
 int accum = 0;  
 /* Invariant: accum = a[0] + … + a[I-1] */  
 for (int i = 0; i < a.length; i++) {  
 accum = accum + a[i];  
 }  
 return accum;  
 }  
 }  

COMP 211, Spring 2010 15

Mutation: Succumbing to the Dark
Side?

•  Four common problems:
1.  Assume that we are repeatedly evaluating a method/function m often

evaluating m on the same list of arguments. How can we avoid performing
the same computation more than once?

2.  Assume we want to compute the number of a nodes in a tree data
structure where nodes can be shared (the standard situation in functional
programming or OO programming with immutable data). How can we
efficiently perform this computation.

3.  Perhaps simplest data structure from the perspective of machine
implementation is the array: a fixed-size list of elements T that is allocated
in contiguous machine memory where each element T is represented by a
fixed size chunk of memory. The array was the only data structure in the
original Fortran language. How can we create such structures using
simple machine operations? How can we efficiently compute new ones?

4.  How can I represent cyclic linked structures (general graphs rather trees)?
•  The best solutions to these four problems all rely on mutation

