
 1

 OO Program Design in Java

Corky Cartwright

Department of Computer Science

Rice University

COMP 211, Spring 2010
 2

 Functional Programming

• Functional programming in Java

• immutable data

• algebraic (inductive) data represented using the composite pattern

• functional methods defined using the interpreter pattern

• essentially the same design recipe as functional programming in Scheme

• classes with a single instance: singleton pattern

• functions as data represented by singleton classes with a single apply mehod

(really should be called the first-class function pattern)

• strategy/command pattern supports passing first-class functions to methods

• closures (with refs to method vars) can be passed as anonymous classes

• extending composite pattern adds hooks supports the visitor pattern

• visitors are first class functions with union pattern structure so inheritance is possible

• static methods are oblivious to class instances (not supported in LL)

• static final fields are program constants

• exceptions and exception-handling using catch

COMP 211, Spring 2010
3

The Design Recipe for Java

How should one go about writing programs?
• Analyze problem, which includes:

• defining any classes C for data types that are not primitive;
• determining what visible methods should appear in each class.

• For each visible method m in each class C :
• Write the header and contract (HTDP: purpose) for m.
• Create a test class for C (or the set of tightly coupled classes

including C if it does not already exist) and write a test method
for m that checks it behavior on representative inputs.

• Select and instantiate a template for the method body and
primary argument (this). Define auxiliary helper methods as
needed, and add them to the class C containing m.

• Code the method by filling in the template
• Run the tests and confirm that they succeed.

COMP 211, Spring 2010
 4

 Functional (LL) Java Restrictions

• No mutation (re-assignment) ESSENTIAL

• No loops (can't do much if no re-assignment)

• No synchronization ESSENTIAL

• No visibility modifiers

• No explicit constructors

• Only exception to above is private constructor for singleton pattern

• No static methods

• No overloading

• Static final fields

• Only inner classes are anonymous classes

• Exceptions but no catch

COMP 211, Spring 2010
 5

 Generalizing FP to Include State

Motivations

•
Modeling objects that change over time

•
Modeling naturally cyclic structures

•
Caching computed results (benign optimization of functional semantics; invisible to client)

–
Lazy evaluation (suspensions are replaced by values on demand; supports infinite streams)

–
Memoization (a table of suspensions mapping function inputs to outputs)

•
Efficient algorithms often use mutable state.

Characteristics

•
Mutable object fields

•
Mutable method variables

•
State pattern: an object's principal field is mutable with union/composite type; the
possible states are the variants of the union/composite

•
OO style dictates the disciplined use of mutation

•
Never modify fields in other objects directly.

•
Support high level mutation via mutating methods.

COMP 211, Spring 2010
 6

 Full Java

• Static methods

• methods can be overloaded

• constructors must be explicit, except for 0-ary constructor

• visibility must be specified explicitly

• generic classes, polymorphic methods

• equality must be defined explicitly (and hashcode overridden if class is
immutable)

• accessors must be defined explicitly

• catch clauses

• mutation allowed

• loops

• Inner classes (static and dynamic)

• synchronization; wait/notify

• Static initialization blocks

COMP 211, Spring 2010
 7

 Static Type Checking

• Compiler checks declared type information for
consistency.

• Generally intuitive except for lack of covariant
generic subtyping, List<String> ! <: List<Object>

• Important gotchas:
– Static types govern overloading
– Static types govern field selection.

COMP 211, Spring 2010
 8

 Generics in a Nutshell

• A generic class/interface is a class/interface parameterized by one or more type
variables T, U, …, e.g. List<T>

• Within a generic class, type variables can (almost) be used like conventional types.

• Prohibitions: new T(), new T[()], … instanceof T, … instanceof Foo<T>,
generic exception classes.

• Warnings (type safety is lost) (T) … , (Foo<T>) ...

• Outside a generic class, clients always refer to instantiations of the class, e.g.
List<Integer>, List<E> where E is any type formed from contants and type
variables in scope.

• Inside the scope of a generic class, the type variables of all enclosing classes are in
scope.

• Note: a static inner class is NOT within the scope of the enclosing class.

• Generic subtyping is non-variant (invariant): C<S> <: (is a subtype of) C<T>
Iff S = T. But it respects erased (ignoring parameterization) class subtyping: A<S>
<: B<T> Iff S = T and A <: B

COMP 211, Spring 2010
 9

 Common Algorithms and Data Structures

•
Generally imperative (probably too imperative) because they evolved
in the context of RAM instruction sets and higher level language
supporting obvious abstractions of patterns of machine instructions.

•
Important to recognize portions of algorithms that can be made
functional without asymptotic performance loss.

•
Important forms of data: machine primitives, algebraic data types
including lists, arrays, tables (finite sets, finite functions), first-class
functions (!), first-class set formulations other than lists (advanced).

•
Sorting lists is critical (fastest technique for int keys: radix).

•
Fast table searching is critical. Hashing is often the best solution.

COMP 211, Spring 2010
 10

 Concurrency and Parallelism

• Concurrency and parallelism both involve the notion of independent computations
(threads) that potentially run concurrently.

• In concurrent programming, these concurrent tasks are not directly related to one
another but the often incidentally share data structures.

• Concurrency arises from:

– asynchronous tasks (computations) created by a GUI

– Multiple input agents (different GUI buttons, different remote computers), e.g an
airline reservation system. Creating applications for a network naturally forces
them to support concurrency

– Improved performance is not the fundamental concern

• Parallelism involves dividing what is in principle a single computation into multiple tasks
(threads) to improve performance. The client of a parallel application does not know
whether the computation is being performed using explicit parallelism or not. (Note:
computer hardware includes lots of internal parallelism to improve performance.)

COMP 211, Spring 2010
 11

 GUI Programming

• GUI programming is the most common form of concurrency.
• A simple GUI involves two threads but the do not access any shared data

structures and their execution only overlaps incidentally.
• Well-written GUI programs can typically be decomposed into three components

and two or more (often varying as the program executes) threads.
• The main thread (the thread that runs when the program is started) executes

the component called the controller, which creates and initializes the other two
components: the view, or the GUI interface, and the model, or the core
application program, which in simple cases is not even aware that the GUI and
controller exist. The application supports a programming interface (API) which
only knows/understands the values passed across that API.

• After creating and initializing the view and the model, the controller starts an
event thread associated with the view (written as part of the GUI library) and
immediately dies. The only period when the two threads overlap is the interval
between the main thread starting the GUI thread and dying. And this overlap is
utterly inconsequential because the main thread does not interact with the GUI
during this period.

COMP 211, Spring 2010
 12

 Canonical Simple GUI program

• Study the ClickCounter program in the course notes on OO
Design.

• It follows the simple scenario described on the previous slide.
• Note that the key part of the code is the controller code that

installs listeners linking the model and view so that the
processing of view events performs appropriate operations on
the model.

• Another potential example: the Laundry Program In HW10.
• BUT, I designed this program in the fall of 1996 when I was

just learning OO design. I did not look carefully at the design
of the program carefully again until this year because after
1998 we limited it to the console interface.

•

COMP 211, Spring 2010
 13

 Rethinking the Laundry Program

The driving loop for the program is the simulate function in the Student class. If the
input to the program is a simple text stream, then this design works well. The
simulate method repeatedly asks for Input and blocks if no input is available yet.

The input text processor (the surrogate GUI for the text version of the program)
reads ASCII characters from the input stream and aggregates them into command
objects. The simulate method sees a stream of commands.

But a good GUI interface allows the user to stipulate in the middle of an
event stream that input should be taken from a file, so the GUI has to
accumulate input commands and buffer them delivering them to the
simulator (the simulate method in the Student class) on demand.
If the simulate operation simply executed a single command (passed to
the simulate method) then the simulate method would be significantly
simpler because it would only need to process a single command (using a
case split on the command),

COMP 211, Spring 2010

 More Challenging Examples

• The best known solutions to many standard
computational problems can be formulated as the
memoization of naïve solutions.

• Memoized algorithms correspond to a problem solving
technique called dynamic programming.

• Examples:

– parsing CFGs (CYK algorithm),

– optimizing the multiplication of a chain of matrices

– shortest path between two nodes in a graph, …

– many string algorithms

• Lots of information on the web on dynamic
programming

COMP 211, Spring 2010
 15

 Rethinking the Laundry Program• The driving loop for the program is the simulate function in the Student
class. If the input to the program is a simple text stream, then this design
works well. The simulate method repeatedly asks for Input and blocks

• The input text processor (the surrogate GUI for the text version of the
program) reads ASCII characters from the input stream and aggregates
them into command objects. The simulate method sees a stream of
commands.

• But a good GUI interface allows the user to stipulate in the middle of an
event stream that input should be taken from a file, so the GUI has to
accumulate input commands and buffer them delivering them to the
simulator (the simulate method in the Student class) on demand.

• If the simulate operation simply executed a single command (passed to the
simulate method) then the simulate method would be significantly simpler
because it would only need to process a single command (using a case
split on the command),

COMP 211, Spring 2010
 16

For Next Class
• Exam II over OO material will be given at

scheduled site on Friday, April 30.
• Parallel sudoku homework is due today at

11:59pm. Enjoy.

Anonymous Inner classes
in Java (Lecture 31, slide
9)

public void start(final double rate)
{

ActionListener adder = new
ActionListener()

 { // anonymous inner class that implements ActionListener interface
 public void actionPerformed(ActionEvent evt)
 {

double interest = balance * rate / 100;
balance += interest;

 }
 };
Timer t = new Timer(1000, adder);
t.start();

 . . .
}

• This is saying, construct a new object of a class that
implements the ActionListener interface, where the
one required method (actionPerformed) is defined
inside the brackets.

17COMP 211, Spring 2010

Java’s Callable Interface
(Lecture 31, slide 14)

• Introduced in J2SE 5.0 in java.util.concurrent
package (remember to “import
java.util.concurrent;”)

public interface Callable<V> {

 /**

 * Computes a result, or throws an exception.

 *

 * @return computed result

 * @throws Exception if unable to compute a result

 */

 V call() throws Exception;

} COMP 211, Spring 2010 18

Task Decomposition using
Callable (Lecture 31, slide
15)

// HTML renderer before decomposition

 ImageData image1 = imageInfo.downloadImage(1);

 ImageData image2 = imageInfo.downloadImage(2);

 . . .

 renderImage(image1);

 renderImage(image2);

// HTML renderer after task decomposition

 Callable<ImageData> task1 = new Callable<ImageData>() {

 public ImageData call() {return imageInfo.downloadImage(1);}};

 Callable<ImageData> task2 = new Callable<ImageData>() {

 public ImageData call() {return imageInfo.downloadImage(2);}};

 . . .

 renderImage(task1.call());

 renderImage(task2.call());

COMP 211, Spring 2010 19

From Sequential to Parallel
Task Decomposition
(Lecture 34, slide 18)

Key Observation:
If two functional tasks can be executed in any order,
they can also be executed in parallel

COMP 211, Spring 2010 20

BUS

Core 0 Core 1

L1 cache L1 cache

L2 Cache

Schematic of a Dual-core
Processor

Task A Task B

How can we express Task
Parallelism in Java?

Answer: there are many ways, but they all
ultimately involve execution on Java threads

The Java main program starts as a single thread

The code executed by the main thread can create
other threads

Either explicitly (as in the following slides); or

Implicitly via library use:
AWT/Swing, Applets, RMI, image loading,

Servlets, web services, Executor usage
(thread pools), …

Executing a Callable task
in a parallel Java Thread
(Lecture 34, slide 20)
// 1. Create a callable closure (lambda)

Callable<ArrayList<Integer>> left_c = …

// 2. Package the closure as a task

final FutureTask<ArrayList<Integer>> task_A =

 new FutureTask<ArrayList<Integer>>(left_c);

// 3. Start executing the task in a parallel thread

new Thread(task_A).start();

// 4. Wait for task to complete, and get its result

left_s = task_A.get();

COMP 211, Spring 2010 22

Quicksort with Parallel Tasks
(Lectures 34 & 39)public static ArrayList<Integer> quickSort(ArrayList<Integer> a) {

 if (a.isEmpty()) return new ArrayList<Integer>();

 final ArrayList<Integer> left = new ArrayList<Integer>();

 final ArrayList<Integer> mid = new ArrayList<Integer>();

 final ArrayList<Integer> right = new ArrayList<Integer>();

 int pivot = a.get(a.size()/2); // Use midpoint element as pivot

 for (Integer i : a)

 if (i < pivot) left.add(i); // Use element 0 as pivot

 else if (i > pivot) right.add(i);

 else mid.add(i)

 // Now, left, mid, right contain the three partitions of

 // array a with respect to pivot

 // Continue on next slide ...

Quicksort with Parallel Tasks
(contd)
(Lectures 34 & 39) FutureTask<ArrayList<Integer>> left_t = // Closure for recursive call

 new FutureTask<ArrayList<Integer>>(

 new Callable<ArrayList<Integer>>() {

 public ArrayList<Integer> call() { return quickSort(left); } });

 FutureTask<ArrayList<Integer>> right_t = // Closure for recursive call

 new FutureTask<ArrayList<Integer>>(

 new Callable<ArrayList<Integer>>() {

 public ArrayList<Integer> call() { return quickSort(right); } });

 // Execute each closure in a parallel thread

 new Thread(left_t).start(); new Thread(right_t).start();

 // Wait for result of FutureTask’s left_t and right_t

 ArrayList<Integer> left_s = left_t.get(); // Sorted version of left

 ArrayList<Integer> right_s = right_t.get(); // Sorted version of right

 return left_s.addAll(mid).addAll(right_s);

} // quickSort

Summary of Lecture 39

COMP 211, Spring 2010

• Trade-offs in Parallel Programming

• Overhead

• Memory

• Serialization

• Computation Graph, Total Work (T1), Critical Path
Length (T∞)

• Lower bounds in Computating Graph
• TP ≥ T1/P
• TP ≥T∞

• Amdahl’s Law (for serial fraction, fS, and parallel
fraction, fP)

• TP >= fS * T1 + fP * T1 / P

Life beyond COMP 211

COMP 211, Spring 2010

• Computer Science has a lot to offer

• Help solve major challenges facing the world

• Energy crisis, cancer prevention, globalization,
…

• Work on intellectually stimulating problems

• Data mining, dynamics of social/financial
networks, computational science, …

• Vast choice of career options

• Animation, Design, Finance, Law, Medicine,
Software, …

• Talk to your major advisor!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	From Sequential to Parallel Task Decomposition (Lecture 34, slide 18)
	How can we express Task Parallelism in Java?
	Executing a Callable task in a parallel Java Thread (Lecture 34, slide 20)
	Quicksort with Parallel Tasks (Lectures 34 & 39)
	Quicksort with Parallel Tasks (contd) (Lectures 34 & 39)
	Summary of Lecture 39
	Life beyond COMP 211

