
 1

Functional Abstraction
and Polymorphism

Corky Cartwright
Department of Computer Science

Rice University

COMP 211, Spring 2010 2

Abstracting Designs
• “The elimination of repetitions is the most

important step in the (program) editing
process” – Textbook

• The software engineering term for revising a
program to make it better or accommodate
an extension: refactoring.

• Repeated code should be avoided at almost
all costs. Why? Revisions involved repeated
code are almost impossible to get right.

• Abstractions help us avoid this problem.

COMP 211, Spring 2010 3

The Need for Abstractions
;; contains-doll? : los -> boolean
;; (contains-doll? alos) determines whether alos
;; contains the symbol 'doll

(define (contains-doll? alos)

 (cond

 [(empty? alos) false]

 [else (or (symbol=? (first alos) 'doll)
 (contains-doll? (rest alos)))]))

COMP 211, Spring 2010 4

The Need for Abstractions
;; contains-car? : los -> boolean

;; (contains-car? alos) determines whether
;; alos contains the symbol 'car

(define (contains-car? alos)

 (cond

 [(empty? alos) false]

 [else (or (symbol=? (first alos) 'car)

 (contains-car? (rest alos)))]))

COMP 211, Spring 2010 5

Creating Abstractions
How can we write one function that replaces

• contains-doll?
• contains-car?
• contains-pizza?
• contains-comp210?

COMP 211, Spring 2010 6

Creating Abstractions
;; contains? : symbol los -> boolean
;; (contains? s alos) determines whether alos
;; contains the symbol s

(define (contains? s alos)

 (cond

 [(empty? alos) false]

 [else (or (symbol=? (first alos) s)

 (contains? s (rest alos)))]))

COMP 211, Spring 2010 7

 Can We Do Better?
;; contains? : any list-of-any -> boolean

;; (contains? v aloa) determines whether

;; aloa contains the value v

(define (contains? v aloa)

 (cond

 [(empty? aloa) false]

 [else (or (equals? (first aloa) v)

 (contains? v (rest aloa)))]))

COMP 211, Spring 2010 8

Using Abstractions
• How do we use contains?

(contains? 'doll (list ...))
(contains? 'car (list ...))

• How can we better define contains-doll?,
contains-car?

 (define (contains-doll? alos) (contains? 'doll alos))
 (define (contains-car? alos) (contains? 'car alos))

• This idea is called reuse. Let’s run with it!

COMP 211, Spring 2010 9

A more complex example
;; below : lon number -> lon
;; (below alon n) returns the list containing the
;; numbers in alon that are less than or equal to n
(define (below alon t)
 (cond [(empty? alon) empty]
 [else
 (cond [(<= (first alon) t)
 (cons (first alon)
 (below (rest alon) t))]
 [else (below (rest alon) t)])]))

COMP 211, Spring 2010 10

A more complex example
;; above : lon number -> lon
;; (above alon n) returns the list of the numbers
;; in alon that are greater than t

(define (above alon t)

 (cond [(empty? alon) empty]

 [else

 (cond [(> (first alon) t)

 (cons (first alon)

 (above (rest alon) t))]

 [else (above (rest alon) t)])]))

COMP 211, Spring 2010 11

Creating Abstractions
How can we write one function that

replaces
• below
• above
• equal
• same-sign-as
• … ?

COMP 211, Spring 2010 12

Creating Abstractions cont.
;; filter1 : relOp lon number -> lon
;; (filter1 test alon n) returns the list of the numbers t
;; in alon such that (test t n) is true
(define (filter1 test alon t)
 (cond [(empty? alon) empty]
 [else
 (cond [(test (first alon) t)
 (cons (first alon)
 (filter1 test (rest alon) t))]
 [else (filter1 test (rest alon) t)])]))

What did we do? Use a function as an argument!
relOp abbreviates relational operator. Requires the
Intermediate language level.

COMP 211, Spring 2010 13

Using Abstractions
• How do we denote (express) function values? In

three different ways. We will use the simpler one
for now: write the name of a defined function
(primitive, library, or program-defined):

 (filter1 <= (list ...) 17))
 (filter1 > (list ...) 17))

How can we define functions below and above without
code duplication?

(define (below alon t) (filter1 <= alon t))
(define (above alon t) (filter1 > alon t))

• Both functions will work just as before!

COMP 211, Spring 2010 14

Repetition in Types
Repetition also happens in type definitions.

A lon is one of:
• empty
• (cons n alon),

 where n is a number and alon is a lon.

A los is one of:
• empty

• (cons s alos),
 where s is a symbol and alos is a los.

COMP 211, Spring 2010 15

Abstracting Types

In FP, called parametric polymorphism
In OOP, called genericity (generic types)

A list-of X is one of:
• empty
• (cons x alox),
 where x is an X and alox is a listOf X.

A variable at the type level.

COMP 211, Spring 2010 16

Abstracting Types

Important! list-of X is NOT list-of any

Type Example(s)
 list-of number (list 1 2 3)

 list-of symbol (list 'a 'b 'pizza)

 any (list 1 2 3)
 (list 'a 'b 'pizza)
 empty
 (list 1 'a +)

COMP 211, Spring 2010 17

Revisiting filter1

What is a more precise description of test’s type?

;; filter1 : relOp (list-of number) number →
;; (listOf number)
;; where relOp is (number number -> boolean)
;; (filter1 r alon n) returns the list of numbers
;; t from alon such that (r t n) is true

COMP 211, Spring 2010 18

Revisiting filter1

Can we generalize the type of filter1?
;; filter1 :
;; (number number -> boolean) (list-of number) number ->

;; (listOf number)

What is special about number? Does filter1 rely on any of the
properties of number?
No. It could be any type X.

;; filter1 : (X X -> boolean) (list-of X) X -> (list-of X)

COMP 211, Spring 2010 19

A better form of filtering?
Claim: filter1 is unnecessarily complex and specialized. Compare it
with the following function (which is part of the Scheme library).

;; filter (X -> boolean) (listOf X) -> listOf X
;; (filter p alox) returns the list of elements e
;; in alox that satisfy the predicate p.

Note that p is unary, which means that we must pass matching unary
functions as arguments. This convention is inconvenient in the absence
of a new linguistic mechanism called lambda-notation which is
introduced in Lecture 9. This mechanism is available in the
“Intermediate student with lambda” language.

COMP 211, Spring 2010 20

Final thoughts
• Function abstraction adds expressiveness to

the programming language
• Type abstraction (polymorphism) does the

same for type annotations
• They work well together, e.g. OCAML,

Haskell.
• Programming will continue to get “easier” as

we add abstraction mechanisms to our
languages.

COMP 211, Spring 2010 21

For Next Class

• Slides for earlier lectures have been cleaned up.
Check them out.

• Review hand evaluation rule for local
• Work on HW3 (which inclues a real challenge problem).
• Reading:
 Chs. 19-22: Linguistic Abstraction,
 Functions as values
 Chs. 21-22: Abstracting designs
 and first class functions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

