
  1

COMP 211 
Principles of Program Design 
Spring 2011

Prof. Robert “Corky” Cartwright

Dr. Stephen Wong

Rice University



COMP 211, Spring 2011
 2

Instructor Information
Corky Cartwright (cork@oplink.net, cork@rice.edu]

• Duncan Hall (DH) 3104, 713-348-6042
• www.cs.rice.edu/~cork 
• Office hours: MWF 9-10am, and by appointment

Stephen Wong [swong@rice.edu]
• Duncan Hall (DH) 3102, 713-348-3814
• www.cs.rice.edu/~swong
• Office hours: TBA

 
Teaching Assistants: 

• Alina Simion
• Kamal Sharma

mailto:swong@rice.edu


COMP 211, Spring 2011
 3

Course Materials
Course web page:

https://wiki.rice.edu/confluence/display/cswiki/S11
(or search for the terms COMP211 wiki S11)
Note: Spring10 wiki still exists and has preference in 
Google searching

• This is a new wiki associated with the CLE@R 
educational computing facility.

• If you forget the long URL given above, you can simply 
go to www.cs.rice.edu/~cork and follow the link to 
Comp 211.

• Course information like TAs, office hours, etc. are 
covered on the course web site.  Some of that 
information is still TBA but will be resolved by the end 
of this week (14 Jan 2011).

https://wiki.rice.edu/confluence/display/cswiki/S11


COMP 211, Spring 2011
 4

Course Demands

• Prerequisite: some programming experience
• Workload: difficult, time-consuming course, requiringabout 

8-15 hours outside of lectures each week.
• Weekly homework assignments, all of which involve 

programming; submitted electronically

• Two “segmented” take-home exams.

• Grading: 50% homework  50% exams



COMP 211, Spring 2011
 5

Course Mechanics

Immediate Concerns
• Take Short Entrance Survey (on wiki web page)
• Our only lab slot (not under our control)

  Tu 10:50-12:05
• Labs begin tomorrow.  First lab is primarily course 

emigration.
• HW0 posted on the course wiki is due on Wednesday!

• You should all have a Rice NetID; if not see me.
• Pick a homework partner if possible; easier to do 

homework (after HW0) in pairs.
• Download DrRacket 5.0.2 on your personal computer; 

it runs on Windows (XP/Vista/7), Mac OS X, and all 
varieties of Unix.  if you do not have a personal 
computer you can use any CLEAR lab machine.



COMP 211, Spring 2011
 6

Course Policies
• No late assignments will be accepted--except 

assignments that draw on 7 slip days granted to each 
student for use during the term.

• Programs are graded according to a precise formula 
described on the course wiki.  Whether a program 
“works” or not (including adequate unit testing) 
constitutes half the grade for that program.  Program 
design (including design documentation), unit test 
cases, program coding style, code documentation all 
matter a great deal.

• We know from experience as professional software 
developers that good design, proper program 
documentation, appropriate tests, and clean program 
are critical in practice.



COMP 211, Spring 2011
 7

Why Focus on Program Design?
• Program Design is the core of Computer Science

– Why not Algorithms?

– Software is the dominant artifact of modern civilization

• “Code is Law” [Lessig]
http://harvardmagazine.com/2000/01/code-is-law.html

     Code regulates many aspects of our lives:
e-media, e-commerce, e-billing, e-voting, e-medical records, e-tax-
filing

• Code is emerging medium for expressing knowledge 
(HTML, XML, PDF)

• Code is omnipresent in manufactured goods

– Airplanes, cars, blenders, phones, toys, greeting cards, …

•

• Program Design is intellectually challenging

http://harvardmagazine.com/2000/01/code-is-law.html


COMP 211, Spring 2011
 8

Why COMP 211?
• Repackaging of innovative curriculum for better marketing

• Comp 210/212 → Comp 211 developed at Rice, with major 
NSF funding

• DrScheme/DrRacket, DrJava, How to Design Programs, OO 
Design Notes were developed to support this curriculum

• How it is different from other introductory courses?
• Focus on principles of design, not on details of a particular 

language or software platform
• Programming as mathematics
• Lean, elegant linguistic frameworks (Core Scheme/Java)
• Data definitions (types) drive the design process

• Follow leading edge software engineering practices
• Program design is not coding (e.g., iterators not Java for loops) 

anymore than architecture is drafting.
• Course theme:  Built to Last (Change)



COMP 211, Spring 2011
 9

Course Overview
• Functional program design in Scheme (6 wks)

• Data-directed (functional) program design               2-10
• Algorithm design                                          11-14
• Applied functional programming and review              15-17

• Object-oriented (OO) design in Java (8 wks)
• Rudiments of the OO programming model        18-19
• Data-directed OO program design              20-25
• Advanced OO constructs (inner classes)                    26-29
• Fundamental data structures and algorithms   30-38
• Event-driven programming, GUIs, concurrency   39-40



COMP 211, Spring 2011
 10

OO Design Patterns Covered
Design pattern = template for solving a

                         computational problem In OO 
• union/composite/interpreter
• singleton
• command/strategy
• factory method
• Visitor
• iterator
• model-view-controller
• decorator?
• template method?
• adapter?
• factory?



COMP 211, Spring 2011
 11

Why Scheme?
• Functional programming (FP) is the key to understanding 

programming as mathematics; programs are simply function 
definitions.

• FP underlies many aspects of good programming design—particularly 
in the context of concurrent programming.  

• Good notation for FP facilitates creating FP solutions
• Scheme is the simplest functional language and we will use only the 

core constructs:
• Function and constant definition
• Function application
• Conditionals
• Structure definitions
• Local definitions (blocks) and single assignment (binding)
• Functional abstraction (lambda-notation)

• Simple formal semantics: rewrite program source text.  Scheme is an 
extension of conventional arithmetic.

• Very good pedagogic IDE: DrScheme/DrRacket



COMP 211, Spring 2011
 12

Why Java?
• Object-oriented (OO) programming is a powerful generalization of 

functional programming that decomposes programs into a collection of 
code units called classes.

• Widely used in mainstream software development.
• Classes support incremental test-driven development.
• Java/C#/C++ now dominate application programming

• Only Java is almost completely platform independent: “write once; run 
anywhere.”

• A good (but not great) OO language.
• Efficiently implemented except for VM startup and memory footprint.

• Very good pedagogic design environment (IDE): DrJava



COMP 211, Spring 2011
 13

Future Options
• F# (supported as a language in Microsoft .NET) is 

a modern OO language with a rich functional 
subset akin to Ocaml.  Potential problems: 
complex type system, only runs on Windows 
platform, no pedagogic IDE, not Java.

• Scala and X10 are modern OO languages with a 
rich functional subset that runs on the Java Virtual 
Machine.   Potential problems: not yet 
mainstream languages; no pedagogic IDE; not 
Java; functional notation is still wordy



COMP 211, Spring 2011
 14

COMP 211 Prepares You to…
• Design well-engineered programs without 

focusing on language features.
• Work as a junior Java software developer.
• Learn deeper concepts of computing:

• Programing languages (design and implementation)
• Formal methods (program semantics, verification, 

formal logic)
• Algorithms (including ideas central to artificial 

intelligence, data-mining, bioinformatics)
• Systems (networks, operating systems, compilers)
• Software engineering (application architecture, test-

driven development, unit testing, refactoring)



COMP 211, Spring 2011
 15

More on Grading
• Homeworks (50%)

• Usually once a week, Friday-to-Friday timeframe is most 
common.

• Work jointly in teams of two.  Do not divide work up.
• No late homework will be accepted, except for 7 slip days 

to be used during the term. A fraction of a day counts as 
a full day.  Advice: hoard your slip days until late in the 
course.

• Exams (50%)  
• Sample exams will be available online.
• Take home, pledged, closed book.
• First exam during week 7 counts 20%
• Second exam during last week 15 counts 30%



COMP 211, Spring 2011
 16

How to Succeed
• Do the reading before class

• This will help you understand our lectures.
• Attend class and mandatory labs

• Reading, lectures, and hands-on instruction complement 
one another

• Exam questions will be drawn from all three. 
• Take homework assignments seriously; follow our 

examples
• A program that simply “works” may get a failing grade.

• Use office hours
• Asking questions is a sign of intelligent life.

• Ask questions in class
• No dumb questions; only inappropriate ones



COMP 211, Spring 2011
 17

For Next Class
• Fill out entrance survey
• Attend lab tomorrow
• Make sure you have done Homework 0

• Already posted online on web-page
• Due next class (Wednesday)
• Individual help is available in lab!

• Next class will cover:
• More details on how to create and submit 

programming assignments.
• The building blocks of functional programming



COMP 211, Spring 2011
 18

Copyright
• COMP 211 lecture notes are copyrighted by Profs. R. 

Cartwright, V. Sarkar, W. Taha, and Z. Nguyen, Rice 
University.

• COMP 211 students can copy and modify these 
materials freely as long as this slide is preserved

• Commercial use requires written permission.
• Publicly available materials for the course are licensed 

under the Creative Commons (CC) license
• See creativecommons.org basic idea, and then course 

Twiki for details



COMP 211, Spring 2011
 19

About Your Instructors
• Our research programs are concerned with

• Improving programming technology including
• Language design
• Developing optimizing compilers
• Programming tools: IDEs, “soft” typers, testing frameworks
• Programming pedagogy

• Improving programmer productivity, using
• Automatic program generation,
• Lightweight formal verification (type systems),
• Higher-order typed languages (ML, Haskell, Java+, Fortress)

• Improving productivity of people building:
• Real-time and embedded systems,
• Hardware (microprocessors or “chips”),


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

