
 1

 Lambda the Ultimate

Corky Cartwright
Stephen Wong

Department of Computer Science
Rice University

COMP 211,
Spring 2011 2

Motivation for λ-notation
• Often, functions are used only once
• Examples: arguments to functions like

• map,
• filter,
• fold,
• and many more "higher-order" functions

• Sometimes we want to build new functions in
the middle of a computation.

• local suffices but it is notationally clumsy for
this purpose.

• λ provides simpler, more concise notation

COMP 211,
Spring 2011 3

Background
• λ-notation was invented by mathematicians. For

example, given
 f (x) = x2 + 1
what is f? f is the function that maps x to x2 + 1 which we
might write as
 x → x2 + 1
The latter avoids naming the function. The notation
λ x . x2 + 1 evolved instead of x → x2 + 1

• In Scheme, we write (lambda (x) (+ (* x x) 1))) instead
of λ x . x2 + 1.

• (define (f x) (+ (* x x) 1)) abbreviates

 (define f (lambda (x) (+ (* x x) 1)))

COMP 211,
Spring 2011 4

Why λ?

• The name was used by its inventor
• Alonzo Church, logician, 1903-1995.
• Princeton University Mathematics Department
• Introduced lambda in 1930’s in an attempt to

formalize mathematics using functions rather
than sets

• Church is Corky's academic great-grandfather

Alonzo Church -> Hartley Rogers ->
 David Luckham -> Corky Cartwright

COMP 211,
Spring 2011 5

Many PL researchers are
crazy about λ!

Prof. Phil Wadler from
University of
Edinburgh, Scotland

QuickTime and aﾪ
TIFF (Uncompressed) decompressor

are needed to see this picture.

COMP 211,
Spring 2011 6

Scope for a Lambda Abstraction

• Argument scope:
(lambda (x1 ... xn) body) introduces the variables x1 ... xn which have
body as their scope (except holes)

• Example:
 (lambda (x) (+ (* x x) 1)))

• Scope for variable introduced by define. At the top-level,
 (define f rhs)

introduces the variable f which is visible everywhere (except in holes introduced
by local definitions in f). Inside
 (local [(define f1 rhs1) ... (define fn rhsn)] body)

 the variables f1 ... fn have the local expression as their scope.

• Recursion comes from define and not lambda!

• Challenge: define factorial using only lambda if zero? * sub1 1

COMP 211,
Spring 2011 7

Clear Statement of Challenge

• Define an expression equivalent to
(local
 [(define fact

 (lambda (n)
 (if (zero? n) 1
 (* n (fact (sub1 n))))))]
 fact)
without using define or local
A hard problem

COMP 211,
Spring 2011 8

Example
Now we can write the following program

(define l '(1 2 3 4 5))
(define a
 (local ((define (square x)
 (* x x)))
 (map square l)))

concisely as

(define l '(1 2 3 4 5))
(define a (map (lambda (x) (* x x)) l))

COMP 211,
Spring 2011 9

Careful Definition of Syntax
• Formal specification of what expressions

that use lambda can look like:

•
exp = ... | (lambda (var

*
) exp)

• Interesting point. λ-abstraction can have
• Can have multiple arguments
• Can have no arguments

• Application of a function with no arguments
• (define blowup (lambda () (/ 1 0)))
(blowup)

COMP 211,
Spring 2011 10

Functions with Zero Arguments?

• We rarely see them in mathemaics
• A 0-ary function always produces the same result, so it’s

just a constant. In logic, constants are often formalized as
0-ary functions.

• In computing, 0-ary functions and constants are not
the same. We use 0-ary functions:

• To encapsulate an expression that is evaluated (if at all)
on demand.

• Once we introduce side-effects (destructive modification
of data), procedures (the analogs of functions in the world
of side effects) of no arguments are common.

COMP 211,
Spring 2011 11

 lambda vs. local
• Recall that:
 (lambda (x1 ... xn) exp)
 is equivalent to
 (local [(define (f x1 ... xn) exp)] f)
• Is lambda as general as local? No!

How do I introduce a recursive function definition
using lambda alone?

• It can be done but it involves deep, subtle, and
messy use of λ-notation (hard challenge, topic in
Comp 311). Not very efficient.

• Direct formulations of recursion rely on the name
of the defined function, which lambda lacks.

COMP 211,
Spring 2011 12

Evaluation of λ-expressions
How do we evaluate a λ-expression
 (lambda (x1 ... xn) body) ?

It's a value!

What about λ-applications?
 ((lambda (x1 ... xn) body) V1 ... Vn) (where)

=> body[x1:=V1 ... xn:=Vn] (called β-reduction)

 where V1,...,Vn are values and body[x1:=V1 ... xn:=Vn] means body
 with x1 replaced by V1, ..., xn replaced by Vn.

Examples:
 ((lambda (x) (* x 5)) 4) => (* 4 5) => 20

 ((lambda (x) (x x)) (lambda (x) (x x)))
=> ((lambda (x) (x x)) (lambda (x) (x x)))
=> ... (cool?)

COMP 211,
Spring 2011 13

More Examples
 ((lambda (x y z) (+ x y z)) 1 2 3)

=> (+ 1 2 3)

 (((lambda (x) (lambda (y) (+ x y))) (* 2 3)) 4)

=> (((lambda (x) (lambda (y) (+ x y))) 6) 4)

=> ((lambda (y) (+ 6 y)) 4)

=> (+ 6 4)

=> 10

COMP 211,
Spring 2011 14

Fine Points of Substitution
• Only the free occurrences of a variable are replaced. A
variable occurrence v in an expression E is free iff it does not
refer to a variable bound in E. A non-free (bound) variable
occurrence v in expression E must be embedded in a local
scope (defined by a lambda or a local) within E.

• Examples:
• Neither occurrence of x is free in (lambda (x) x)

• Neither occurrence of x is free in (local [(define x 12)] x)

• x is free in (+ y x)

• x is free in (lambda (y) (+ y x))

• Only the first occurrence of x is free in
 ((+ x (local [(define x 12)] (* x 13))

COMP 211,
Spring 2011 15

Fine Points of β-reduction
• In the context of the Scheme evaluation, the simple

rules we have already given tell the whole story.
• β-reduction is a general transformation rule in the

world of functional programming. In β-reductions
 ((lambda (x1 ... xn) M) N1 ... Nn)
=> body[x1:=v1 ... xn:=vn]

ugly things can happen when N1 ... Nn

contain free variables. (In Scheme evaluation,
values never contain free variables.)

COMP 211,
Spring 2011 16

Nesting λ
 (lambda (x) (lambda (y) (+ (* x y) (* 4 5)))
=> (lambda (x) (lambda (y) (+ (* x y) (* 4 5)))

 ((lambda (x) (lambda (y) (+ x 1)) 5)
=> (lambda (y) (+ 5 1))

 ((lambda (x) (lambda (x) (+ x 1)) 5)
=> (lambda (x) (+ x 1))

 ((lambda (x) (lambda (y) (y x))) (lambda (z) (+ y z)))
=> (lambda (y) (y (lambda (z) (+ y z)))))

which is WRONG! This mistake and the change in the meaning/scope
of y is called “capturing a bound variable”. This terminology is a bit
misleading because the free variable y is captured (becoming bound) in the
erroneous transformation. We should say “capturing a free variable”.

COMP 211,
Spring 2011 17

Safe Substitution
To salvage the correctness of β-reduction in the general case, we must stipulate that

the rule uses safe substitution, where safe substitution renames local variables
in the code body that is being modified by the substitution to avoid capturing
free variables in the argument expression that is being substituted.

 ((lambda (x) (lambda (y) (y x))) (lambda (z) (+ y z)))
 => ((lambda (x) (lambda (f) (f x))) (lambda (z) (+ y z)))
 => (lambda (f) (f (lambda (z) (+ y z))))

We will hold you responsible on exams for understanding either safe substitution or the
subtleties of β-reduction when the argument expressions contain free variables.

COMP 211,
Spring 2011 18

When Should I Use a
Lambda?

• It makes sense to use a lambda instead define
when

• the function is not recursive;
• the function is needed only once; and
• the function is either

• being passed to another function, or
• being returned as the final result (contract returns “->”)

• Note: It is hard to read code when lambda is used at
the head of an application

• ((lambda (x) (* x x)) (+ 13 14))
• We can rewrite this as:

• (local ((define x (+ 13 14)))
 (* x x))

COMP 211,
Spring 2011 19

Lambda Becoming Pervasive in PL

Python
By popular demand, a few features commonly found in functional

programming languages and Lisp have been added to Python [...]
– Guido van Rossum, 4.7.4 Lambda Forms, Python Tutorial
but very badly. Ask any functional programmer about Python

and they will either say “What is Python” or laugh.
Java
Perhaps in Java 8. Major controversy over how comprehensive the

construct should be.

COMP 211,
Spring 2011 20

For Next Class
• Homework due next Monday!

• Continue Reading and Reviewing:
• Ch 21-22: Abstracting designs and first

class functions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

