
 1

Generative (Non-structural)
Recursion

Corky Cartwright
Stephen Wong

Department of Computer Science
Rice University

COMP 211, Spring 2011

2

The Recipe Until Now
• Data analysis and design including

generic templates
• For each function in the design

• Contract, purpose
• Examples (stated as tests)
• Template Instantiation

• Precisely follows the structure of the data processed
by the function

• Using this template, we can do "almost everything”
• Testing

COMP 211, Spring 2011

3

Structural Recursion
• Is the best problem-solving strategy

• For the vast majority of functions on recursive
data.

• Yields satisfactory efficiency in most cases.
• Cannot, in principle, compute all

computable functions
• Is ill-suited to an important class of

problems that technically can be solved
using structural recursion but can be solved
more cleanly and efficiently using non-
structural methods.

COMP 211, Spring 2011

4

Non-structural Functional
Programs

• Best explained by presenting some
examples before discussing the general
template.

Problem: efficiently sort a list of numbers
Good solutions: merge-sort, quick-sort

COMP 211, Spring 2011

5

Merge Sort
● Not going to present the actual program because it is an exercise in HW

4.
● Idea:

● Base case: list of length 0 or 1
● Inductive case:

• split the list into two non-empty (almost) equal parts

• sort each part
● Merge the two results

● Why non-structural?
● Base case: list of length 0 or 1
● Inductive case:

● split the list into two non-empty (almost) equal parts
● sort each part (not a substructure!)
● merge the two results

COMP 211, Spring 2011

6

Quick Sort
• Invented by C.A.R. ("Tony") Hoare
• Functional version is derived from the imperative

(destructive) algorithm; less efficient but still works
very well

• Idea:
• Base case: list of length 0 (could be 0 or 1)
• Inductive case:

• partition the list into three parts:
• the singleton list containing first,
• the list of all items <= first, and
• the list of all items > first

• sort the the lists of lesser and greater items
• return (sorted lesser) || (list first) || (sorted greater)

where || means list concatenation (append)

COMP 211, Spring 2011

7

 Quicksort Breaks Structural Template

(define (qsort alon)
 (cond
 [(empty? alon) empty]
 [else
 (local ((define pivot (first alon))
 (define other (rest alon)))
 (append
 (qsort [filter (lambda (x) (<= x pivot)) other])
 (list pivot)
 (qsort [filter (lambda (x) (> x pivot)) other])))]))

qsort terminates on all inputs. Why?

COMP 211, Spring 2011

8

Not so quick sort
(define (qsort alon)
 (cond
 [(empty? alon) empty]
 [else
 (local [(define pivot (first alon))]
 (append
 (qsort [filter (lambda (x) (<= x alon)) other])
 (qsort [filter (lambda (x) (> x alon)) other])))]))

This variant may not terminate. Why? Is
 [filter (lambda (x) (<= x pivot)) alon]

necessarily smaller than alon?

COMP 211, Spring 2011

9

A More General Recipe

• Data analysis and design
• Contract, purpose
• Examples
• Template Instantiation (includes header)

• More flexible than before because non-structural
recursion is allowed

• Explicit termination argument if non-structural
• Testing

COMP 211, Spring 2011

10

Generative Template

(define (gr-fun problem) ;; problem is mutliple parameters
 (cond
 [(trivially-solvable? problem)
 (compute-solution problem)]
 [else
 (combine-solutions
 ... problem ...
 (gr-fun (gen-subproblem-1 problem))
 ...
 (gr-fun (gen-subproblem-n problem)))]))

where (gen-subproblem-1 problem), ..., (gen-subproblem-n problem) are
smaller problems of the same form as problem.

COMP 211, Spring 2011

11

The Easy Cases
Generalized Structural Recursion

Generalized structural recursion where an input argument x is destructured but
the subproblems are not immediate components of the x. Example: a function
that takes a lon and sums consecutive pairs of elements.

; add-pairs: lon -> lon
(define (add-pairs lon)
 (cond [(empty? lon) empty]
 [(empty? (rest lon)) lon]
 [else (cons (+ (first lon) (first (rest lon)))
 (add-pairs (rest (rest lon))))]))

This generalized form of structural recursion does not conform to the structural
template for lon. It corresponds to strong mathematical induction (also called
“course of values” induction) and obviously terminates. The naïve definition of
fib is another example.

COMP 211, Spring 2011

12

The Easy Cases

Other Forms of Generalized Structural Recursion
• Structural recursion on a tuple such as a pair of numbers.

In the standard formalization of arithmetic, corresponds to
multiple induction. Some deep theorems in proof theory
focus on this issue.
Example: merge as done in the book.

• Recursion on substructure where the specific substructure
is computed by an auxiliary function.

• Example: parse function from next lecture.

COMP 211, Spring 2011

13

Easy Cases cont.

Abstract Structural Recursion

Generative recursion may be structural at an abstract level (if we use
a different representation of the argument list). Example: the
upfrom help function from lab 1.

; upfrom: nat nat -> list-of nat
(define (upfrom m n)
 (cond [(> m n) empty]
 [else (cons m (upfrom (add1 m) n))]))

What does the pair (m,n) represent? An interval on the number
line. Is there another representation we could choose that would
make this program structural in the narrow sense used in the book.

COMP 211, Spring 2011

14

Structural Equivalent

This program even has a structural analog when
we change to data representation. Let (m,k)
represent the interval from m to m+k-1, i.e., the
set {m, m+1, ..., m+k-1}, i.e. the interval starting
at m of size k. Let us call the function using the
revised data representation Upfrom: nat nat ->
list-of nat. Then we assert that
 (upfrom m m+k-1) = (Upfrom m k)

COMP 211, Spring 2011

15

Easy Cases cont.

Definition of Upfrom

; Upfrom: nat nat -> list-of nat
(define (Upfrom m k)
 (cond
 [(zero? k) empty]
 [(positive? k) (cons m (Upfrom (add1 m) (sub1 k)))]))

This program is structurally recursive and has exactly
the same recursive calling structure as upfrom. Should
we use it instead of upfrom in lab? Book classifies
upfrom as advanced form of structural recursion.

COMP 211, Spring 2011

16

Bonafide generative recursion
• In many cases, generative recursion cannot be

interpreted as generalized structural recursion or
structural recursion over a different or more abstract
representation of the data.

• In this case, we need to ensure that all recursive calls
reduce the “size” of some problem metric (a function
of the argument values). Often this metric is the
“size” (expressed as a nat) of the problem inputs.
Some common metrics are the length of a list, the
depth of a tree, etc.

• The simple cases are really simple, e.g., the merge-
help function in HW03 if you follow the extra credit
path. In that case the sum of the length of both
arguments to merge help always decreases.

COMP 211, Spring 2011

17

Sample termination argument

• Quicksort terminates because each
recursive call (qsort alon) reduces the
metric (length alon). In particular, both
[filter (lambda (x) (<= x pivot)) other] and
[filter (lambda (x) (> x pivot)) other]

 are sublists of other, which is shorter than
alon

• Without such an argument, a non-structural
program must be considered incomplete.

COMP 211, Spring 2011

18

General framework for proving
termination

Devise a metric (a size function) for the problem inputs with values of
some familiar structural type (often nat) and show that each
recursive call involves smaller problem inputs than the original one.

In pathological cases, this ordering may require the use of
lexicographic ordering on n-tuples (or even unbounded sequences
like alphabetic words) of data values. These pathologies are rare in
practice. Not a single occurrence in DrJava code base.

Any well-founded partial ordering (no infinite descending chains)
works. The recursive calls must have lesser size according to this
ordering. (In structural recursion, the size function is the identity
function, and the sizes of recursive calls are immediately less the size
of the top level call.

We are relying on elementary results in the deep subject or ordinal
numbers in set theory.

COMP 211, Spring 2011

19

Why Use Generative Recursion?
• What if we can choose between

• a structural solution and
• a generative solution?

• Often, the second is much faster
• Sorting
• Simpler example from book: greatest-common-divisor

(GCD) gcd(6,9)=3, gcd (99, 18) = 9, etc.
structural version so brain-damaged I could not follow the
narrative. I had to infer what the code did.
Rant: local functions in book often have no contracts!

• Even better example: searching an ordered list supporting
direct access, e.g., an array/vector (but not efficient in
functional model if deletions are necessary!)

COMP 211, Spring 2011

20

Are all data types structural?
• Surprisingly delicate question.
• Book says no.
• Walid Taha said no in Comp 210.
• My answer: it depends on how you define the meanings of types. If we use

abstract mathematical meanings (where functions are really interpreted as
functions) then the answer is no. But if we use the a pedestrian semantics
that uses some notion of syntax/code (which is finite!) to represent
functions (and other similarly infinite data objects) the answer is yes.

• Which answer do I prefer? As a programmer: “no”; as a language
implementor: “yes”. Answer relevant to this class “no”.

• Conceptually I like to think of program data values as abstract
mathematical objects. I don't want to think about functions as finite
syntactic objects and the correct syntactic representations are more
complex than you might think. Moreover, I cannot think of any case where
some important property of a program can be established using a
pedestrian semantics for functions but not with a mathematical semantics.

• In reasoning about programs, the mathematical point of view is simpler
and just as powerful.

COMP 211, Spring 2011

21

Some Algorithm Families
• Sorting and Searching
• Mathematical iteration: bisection,

Newton's method.
• Backtracking (traversing a maze, 8

queens)
• Dynamic Programming
• Generally the structural algorithms are so

trivial that they typically aren't discussed
as algorithms. Nothing interesting to say.

COMP 211, Spring 2011

22

Termination Arguments
The details of termination arguments can be tricky and they matter!

Example: binary search

To search for a value v in the ordered sequence S = s1, ..., sn, compare v
with the midpoint element sk of S. If equal, done. If < recursively seach
s1, ..., sk-1. Otherwise, recursively search sk+1, sn

If we start with an interval N units wide, then we only need a limited
number of steps to reach an interval one units wide. In particular, the
intervals will proceed as N, N/2, N/4, ..., and will reach size 1 in ⌈ log2 N ⌉
steps. This argument relies on major handwaving. Why? Assumes N is
odd so that a well-defined midpoint exists. Assumes N is power of 2 so
that N/2, N/4, … make sense, but N cannot be both odd and a power of 2.
In practice, the key issue is whether the case N = 2 is handled correctly. If
not, binary search can “loop” (infinite recursion).

COMP 211, Spring 2011

23

The Tradeoff (if we can choose)
● How do we chose between

● a structural solution and
● a generative solution?

● Speed vs. clarity (brute force) in some cases
● In other cases, there is no credible structural

algorithm. The structural algorithm may be
ridiculously inefficient.

● Chapter 26 has a good example
● Greatest-common-divisor (GCD)
● gcd(6,9)=3, gcd (99, 18) = 9, etc.
● The structural algorithm is worse than crude.

● More typical trade-off: insertion sort vs. quicksort

COMP 211, Spring 2011

24

For Next Class
• Work on HW 4 due next Monday
• Continue Reading:

• Ch 25-28: Non-structural recursion.
• Start on next homework assignment

• (mergesort lon) (Problem 26.1.2 but top-
down rather than bottom-up version of
mergesort)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

