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The Recipe Until Now
• Data analysis and design including 

generic templates
• For each function in the design

• Contract, purpose
• Examples (stated as tests)
• Template Instantiation

• Precisely follows the structure of the data processed 
by the function

• Using this template, we can do "almost everything”
• Testing
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Structural Recursion
• Is the best problem-solving strategy

• For the vast majority of functions on recursive 
data.

• Yields satisfactory efficiency in most cases.
• Cannot, in principle, compute all 

computable functions
• Is ill-suited to an important class of 

problems that technically can be solved 
using structural recursion but can be solved 
more cleanly and efficiently using non-
structural methods.
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Non-structural Functional 
Programs

• Best explained by presenting some 
examples before discussing the general 
template.

Problem: efficiently sort a list of numbers
Good solutions: merge-sort, quick-sort
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Merge Sort
● Not going to present the actual program because it is an exercise in HW 

4. 
● Idea:

● Base case: list of length 0 or 1
● Inductive case:

• split the list into two non-empty (almost) equal parts

• sort each part
● Merge the two results

● Why non-structural?
● Base case: list of length 0 or 1
● Inductive case:

● split the list into two non-empty (almost) equal parts
● sort each part (not a substructure!)
● merge the two results
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Quick Sort
• Invented by C.A.R. ("Tony") Hoare
• Functional version is derived from the imperative 

(destructive) algorithm; less efficient but still works 
very well

• Idea:
• Base case: list of length 0 (could be 0 or 1)
• Inductive case: 

• partition the list into three parts: 
• the singleton list containing first,
• the list of all items <= first, and
• the list of all items > first 

• sort the the lists of lesser and greater items
• return (sorted lesser) || (list first) || (sorted greater) 

where || means list concatenation (append)
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 Quicksort Breaks Structural Template

(define (qsort alon)
  (cond 
    [(empty? alon) empty]
    [else
      (local ((define pivot (first alon))
              (define other (rest alon)))
        (append
          (qsort [filter (lambda (x) (<= x pivot)) other])
          (list pivot)
          (qsort [filter (lambda (x) (> x pivot)) other])))]))

qsort terminates on all inputs.  Why?
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Not so quick sort
(define (qsort alon)
  (cond 
    [(empty? alon) empty]
    [else
      (local [(define pivot (first alon))]
        (append
          (qsort [filter (lambda (x) (<= x alon)) other])
          (qsort [filter (lambda (x) (> x alon)) other])))]))

This variant may not terminate.  Why?  Is
  [filter (lambda (x) (<= x pivot)) alon]

necessarily smaller than alon?
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A More General Recipe

• Data analysis and design
• Contract, purpose
• Examples
• Template Instantiation (includes header)

• More flexible than before  because non-structural
recursion is allowed

• Explicit termination argument if non-structural
• Testing
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Generative Template

(define (gr-fun problem)  ;; problem is mutliple parameters
  (cond
    [(trivially-solvable? problem)
     (compute-solution problem)]
    [else
     (combine-solutions
       ... problem ...
       (gr-fun (gen-subproblem-1 problem))
       ...
       (gr-fun (gen-subproblem-n problem)))]))

where (gen-subproblem-1 problem), ..., (gen-subproblem-n problem) are
smaller problems of the same form as problem.



COMP 211, Spring 2011
 

11

The Easy Cases
Generalized Structural Recursion

Generalized structural recursion where an input argument x is destructured but 
the subproblems are not immediate components of the x.  Example: a function 
that takes a lon and sums consecutive pairs of elements.

; add-pairs: lon -> lon
(define (add-pairs lon) 
  (cond [(empty? lon) empty]
        [(empty? (rest lon)) lon]
        [else (cons (+ (first lon) (first (rest lon)))
                       (add-pairs (rest (rest lon))))]))

This generalized form of structural recursion does not conform to the structural 
template for lon.  It corresponds to strong mathematical induction (also called 
“course of values” induction) and obviously terminates.  The naïve definition of 
fib is another example.
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The Easy Cases

Other Forms of Generalized Structural Recursion
• Structural recursion on a tuple such as a pair of numbers.  

In the standard formalization of arithmetic, corresponds to 
multiple induction.  Some deep theorems in proof theory 
focus on this issue.
Example: merge as done in the book.

• Recursion on substructure where the specific substructure 
is computed by an auxiliary function.

• Example: parse function from next lecture.
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Easy Cases cont.

Abstract Structural Recursion

Generative recursion may be structural at an abstract level (if we use 
a different representation of the argument list).  Example: the 
upfrom help function from lab 1.

; upfrom: nat nat -> list-of nat
(define (upfrom m n) 
  (cond [(> m n) empty]
        [else (cons m (upfrom (add1 m) n))]))

What does the pair (m,n) represent?  An interval on the number 
line.  Is there another representation we could choose that would 
make this program structural in the narrow sense used in the book.
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Structural Equivalent

This program even has a structural analog when 
we change to data representation.  Let (m,k) 
represent the interval from m to m+k-1, i.e., the 
set {m, m+1, ..., m+k-1}, i.e. the interval starting 
at m of size k. Let us call the function using the 
revised data representation Upfrom: nat nat -> 
list-of nat.  Then we assert that
      (upfrom m m+k-1) = (Upfrom m k)
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Easy Cases cont.

Definition of Upfrom

; Upfrom: nat nat -> list-of nat
(define (Upfrom m k) 
  (cond 
    [(zero? k) empty]
    [(positive? k) (cons m (Upfrom (add1 m) (sub1 k)))]))

This program is structurally recursive and has exactly 
the same recursive  calling structure as upfrom.  Should 
we use it instead of upfrom in lab?  Book classifies 
upfrom as advanced form of structural recursion.
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Bonafide generative recursion
• In many cases, generative recursion cannot be 

interpreted as generalized structural recursion or 
structural recursion over a different or more abstract 
representation of the data. 

• In this case, we need to ensure that all recursive calls 
reduce the “size” of some problem metric (a function 
of the argument values).  Often this metric is the 
“size” (expressed as a nat) of the problem inputs.  
Some common metrics are the length of a list, the 
depth of a tree, etc.

• The simple cases are really simple, e.g., the merge-
help function in HW03 if you follow the extra credit 
path.  In that case the sum of the length of both 
arguments to merge help always decreases.
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Sample termination argument

• Quicksort terminates because each 
recursive call (qsort alon) reduces the 
metric (length alon).  In particular, both
[filter (lambda (x) (<= x pivot)) other] and
[filter (lambda (x) (> x pivot)) other]

  are sublists of other, which is shorter than 
alon

• Without such an argument, a non-structural 
program must be considered incomplete. 
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General framework for proving 
termination

Devise a metric (a size function) for the problem inputs with values of 
some familiar structural type (often nat) and show that each 
recursive call involves smaller problem inputs than the original one.

In pathological cases, this ordering may require the use of 
lexicographic ordering on n-tuples (or even unbounded sequences 
like alphabetic words) of data values.  These pathologies are rare in 
practice.  Not a single occurrence in DrJava code base.

Any well-founded partial ordering (no infinite descending chains) 
works.  The recursive calls must have lesser size according to this 
ordering.  (In structural recursion, the size function is the identity 
function, and the sizes of recursive calls are immediately less the size 
of the top level call.

We are relying on elementary results in the deep subject or ordinal 
numbers in set theory.
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Why Use Generative Recursion?
• What if we can choose between

• a structural solution and 
• a generative solution?

• Often, the second is much faster
• Sorting
• Simpler example from book: greatest-common-divisor 

(GCD)  gcd(6,9)=3, gcd (99, 18) = 9, etc.
structural version so brain-damaged I could not follow the 
narrative.  I had to infer what the code did.
Rant: local functions in book often have no contracts!

• Even better example: searching an ordered list supporting 
direct access, e.g., an array/vector (but not efficient in 
functional model if deletions are necessary!)
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Are all data types structural?
• Surprisingly delicate question.
• Book says no.
• Walid Taha said no in Comp 210.
• My answer: it depends on how you define the meanings of types.  If we use 

abstract mathematical meanings (where functions are really interpreted as 
functions) then the answer is no.  But if we use the a pedestrian semantics 
that uses some notion of syntax/code (which is finite!) to represent 
functions (and other similarly infinite data objects) the answer is yes. 

• Which answer do I prefer?  As a programmer: “no”; as a language 
implementor: “yes”.  Answer relevant to this class “no”.

• Conceptually I like to think of program data values as abstract 
mathematical objects.  I don't want to think about functions as finite 
syntactic objects and the correct syntactic representations are more 
complex than you might think. Moreover, I cannot think of any case where 
some important property of a program can be established using a 
pedestrian semantics for functions but not with a mathematical semantics.

• In reasoning about programs, the mathematical point of view is simpler 
and just as powerful.
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Some Algorithm Families
• Sorting and Searching
• Mathematical iteration: bisection, 

Newton's method.  
• Backtracking (traversing a maze, 8 

queens)
• Dynamic Programming
• Generally the structural algorithms are so 

trivial that they typically aren't discussed 
as algorithms.  Nothing interesting to say.
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Termination Arguments
The details of termination arguments can be tricky and they matter! 

Example: binary search

To search for a value v in the ordered sequence S = s1, ..., sn, compare v 
with the midpoint element sk of S.  If equal, done.  If < recursively seach 
s1, ..., sk-1.  Otherwise, recursively search sk+1, sn

If we start with an interval N units wide, then we only need a limited 
number of steps to reach an interval one units wide.  In particular, the 
intervals will proceed as N, N/2, N/4, ..., and will reach size 1 in ⌈ log2 N ⌉ 
steps.  This argument relies on major handwaving.  Why?  Assumes N is 
odd so that a well-defined midpoint exists.  Assumes N is power of 2 so 
that N/2, N/4, … make sense, but N cannot be both odd and a power of 2.  
In practice, the key issue is whether the case N = 2 is handled correctly.  If 
not, binary search can “loop” (infinite recursion).
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The Tradeoff (if we can choose)
● How do we chose between

● a structural solution and 
● a generative solution?

● Speed vs. clarity (brute force) in some cases
● In other cases, there is no credible structural 

algorithm.  The structural algorithm may be 
ridiculously inefficient.

● Chapter 26 has a good example
● Greatest-common-divisor (GCD)
● gcd(6,9)=3, gcd (99, 18) = 9, etc.
● The structural algorithm is worse than crude.

● More typical trade-off: insertion sort vs. quicksort
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For Next Class
• Work on HW 4 due next Monday
• Continue Reading:

• Ch 25-28: Non-structural recursion.
• Start on next homework assignment

• (mergesort lon)  (Problem 26.1.2 but top-
down rather than bottom-up version of 
mergesort)
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