Complexity and Accumulators

Corky Cartwright Stephen Wong

Department of Computer Science Rice University

Today's goals

.Accounting for cost of computation (complexity)
.Accumulating "history" using accumulators

Example: Partial Sums

```
; ; sums: (list-of number) -> (list-of number)
```

; (sums alon) computes the partial sums for n; it returns a list of
; ; numbers, psum, such that the ith element of psum is the sum of the
; ; numbers preceding (and including) the ith element of alon e.g.,
; ; (sums '(1 $\left.2 \begin{array}{lllll}1 & 3 & 4 & 5\end{array}\right)=\left(\begin{array}{lllll}1 & 3 & 6 & 10 & 15\end{array}\right)$
(define (sums alon)
(cond [(empty? alon) empty]
[else
(cons (first alon)
(map (lambda (x) (+ x (first alon)))
(sums (rest alon))))]))

Question: how many additions does function sums perform?

Reduction sequence:
... (list 5)... => . . . =>
... (list 4 (+ 5 4))... =>
... (list 4 9)... => . . . =>
... (list 3 (+ 4 3) (+ 9 3)) ... => . . . =>
... (list 3 712)... => . . . =>
... (list 2 (+3 2) (+7 2) (+12 2)) ... => . . . =>
... (list 25914)... 5 . . . $=>$
... (list 1 (+2 1) (+5 1) (+9 1) (+14 1)) ... => . . . =>
(list 13610 15)

Cost accounting

.Measure computation cost in reduction steps using our reduction semantics. Models actual cost reasonably well.
.Consider three algorithms
Cost-A(n) $=2 * n^{3}+n^{2}+50$

- $\operatorname{Cost}-B(n)=3 * n^{2}+100$
.Cost-C(n) $=2^{n}$
.Which algorithm is best?
.Which algorithm works best for large n?
.Can we formalize this notion?

Order of Complexity

.We'll say that Cost-X is "order $f(n))^{\prime \prime}$, or simply " $O(f(\mathrm{n})$)" (read "Big-O of $f(\mathrm{n})$)") if .Cost-X(n) < factor * $f(\mathrm{n})$ for sufficiently large n .Examples:
.Cost-A(n) $=2 * n^{3}+n^{2}+1$ Cost-A is $O\left(n^{3}\right)$
. Cost-B(n) $=3 * n^{2}+10 \quad$ Cost-B is $O\left(n^{2}\right)$
.Cost-C(n) $=2^{n} \quad$ Cost-C is $O\left(2^{n}\right)$

Famous "Complexity Classes"

.O(1)
.$O(\log n)$
. O (n)
.$O(n * \log n)$
. $O\left(n^{2}\right)$
$O\left(n^{3}\right)$ cubic
. $O\left(n^{k}\right)$
. $2^{0(n)}$

constant-time logarithmic
(head, tail)
(binary search)
linear (vector multiplication)
"n log n"
(sorting)
quadratic (matrix addition)
(matrix multiplication)
polynomial (... many!...)
exponential (guess password)

Improving Performance

.The sums function performs $n *(n-1) / 2$ additions to compute partial sums for a list of n numbers
.We can do much better than $O\left(n^{2}\right)$!
-What information do we need to do better?
.This is basically the "lost history" in the recursive call

Accumulator version of same program

Idea: as the list is successively decomposed into first and rest, the sums function can accumulate the sum of the numbers to the left of rest.
Template Instantiation:
(define (sums-help lon sum)
(cond [(empty? Lon) ...]
[else ... (first lon) ...
(sums-help (rest lon)

```
(+ (first lon) sum) ... ]))
```


Accumulator version of same program

; sums-help: (list-of number) number $->$ (list-of number)
; Purpose: (sums-help alon s) is the sum of s and the numbers in alon
Invariant: s is the sum of the numbers preceding alon in alon0 (alon is always a tail of alon0)
(define (sums-help alon s) (cond
[(empty? alon) empty] [else
(local [(define new-s (+ s (first alon)))] (cons new-s (sums-help (rest alon) new-s)))]))
; sums: (list-of number) -> (list-of number)
; Purpose; (sums alon) computes the sum of the numbers in alon (define (sums alon0) (sums-help alon0 0))

Note the addendum to the purpose statement for sum-help called the "invariant"; it identifies what argument values can occur in nested calls given a top level call from the sum function.

Question: how many additions does the accumulator version perform?

Reduction sequence:

```
        (sums-help (list 1 2 3 4 5) 0) => . . .
=> ...(+ 0 1)... => . .
=> (cons 1 (sums-help (list 2 3 4 5) 1)) => . . .
=> ...(+ 1 2)... => . . .
=> (cons 1 (cons 3 (sums-help (list 3 4 5) 3))) =>
=> ...(+ 3 3)... => .
=> (cons 1 (cons 3 (cons 6 (sums-help (list 4 5) 6)))) => . . .
=> ...(+ 6 4)... => .
=> (cons 1 (cons 3 (cons 6 (cons 10 (sums-help (list 5) 10)))))
=> . . . => ...(+ 10 5) ... => . .
=> (cons 1 (cons 3 (cons 6 (cons 10 (cons 15 empty)))))
```


Formulating an Accumulator

If we decide to use an accumulator, we need to answer three questions:
.What should the initial value for the accumulator be?
.How will we modify the accumulator in each recursive call? (What will we "accumulate"?) .How will we use the accumulator to produce the final result?

Naïve List Reversal

(define (rev l)
(cond [(empty? l) empty]
[else (append (rev (rest l))
(list (first l))]))

Reversal using an accumulator

; Invariant: ans is the reversed list of all items ; that preceded alox in 10
(define (rev-help alox ans)
(cond [(empty? alox) ans]
[else (rev-help (rest alox)
(cons (first alox) ans))]))
(define (fast-rev alox0) (rev-help alox0 empty))

Added Expressivity

.Code simplification using accumulators .Consider the list reverse function
Takes '(12llll $1 \begin{array}{ll}1 & 3\end{array} 4$
.How did we write this function in the naïve version? Used append. Ugh. append takes $O(m)$ time where m is length of first list.
.What information did we use to do better?
.The "lost history" of the recursive call
.Is this list reversal example really different from the list accumulation example?

Naïve List Flattening

; A (gen-list-of X) is either:
; * empty, or
; * (cons (gen-list-of X) (gen-list-of X))
; * (cons X (gen-list-of X)).
; (flatten: (gen-list-of symbol) -> (list-of symbol)
; (flatten agl) returns a list of the symbols in order of appearance
; (flatten '((a (b)) c ((d))) = ' (a b c d)
(define (flatten agl)
(cond [(empty? agl) empty] ; local distorts the template
[else (local [(define head (first agl))
(define tail (flatten (rest agl)))]
(cond [(empty? head) tail]
[(cons? head) (append (flatten head) tail)]
[else ; head has type X
(cons head tail)]))]))

Note: the nested cond does not use the primitive list? because it is inefficient.

Accumulator version

; flatten-help: (gen-list-of X) (list-of X) -> (list-of X)
; Purpose: (flatten agl lox) returns a (list-of X) consisting of the X elements embedded in lox in the same order as in lox.
; Example: (flatten-help '((a (b)) c ((d)) ' (e)) = '(a b c de)
(define (flatten-help agl alox) (cond [(empty? agl) alox]
[else
(local [(define head (first agl))
(define tail (flatten-help (rest agl) alox))]
(cond [(empty? head) tail]
[(cons? head) (flatten-help head tail)]
[else ; head has type X (cons head tail)]))]))
(define (fast-flatten agl0) (flatten-help agl0 empty)

