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Using Functions to Represent Objects

• How can we represent a pair in Scheme so that the only 
operations that code can perform on pairs are:
  (make-pair x y)
  (pair-first p)
  (pair-second p)
  (pair-equal? p1 p2)

• What if we represent a pair as a list?  As a struct?  Structs 
are not as robust as you might think.  In the advanced 
language level try:
  (define-struct Pair (first second))
  (define p (make-Pair 1 2))
  (set-Pair-first! P 17)
  p
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Objects as closures
(define (make-pair x y)
  (lambda (msg)
    (cond [(equal? msg 'first) (lambda () x)]
          [(equal? msg 'second) (lambda () y)]
          [(equal? msg 'equal)
           (lambda (p)
             (and (equal? (pair-first p) x)
                  (equal? (pair-second p) y)))])))
(define (pair-first p) ((p 'first)))
(define (pair-second p) ((p 'second)))
(define (pair-equal? p1 p2) ((p1 'equal) p2))

This representation trick is very important.  It shows how closures 
(functions with free variables treated as first-class data values) can 
be used to represent abstract (black-box) data types.
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Useful Functionals

• What is a functional?  A function that takes a function as 
a argument and often returns a function.  The differential 
and integral operators in calculus are functionals.

• Important functionals in functional programming:  
  map filter foldr foldl curry
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The Idea Behind curry
• Every function of the form
   A  B -> C
can be converted to a function of type
   A -> (B -> C)
which is often more convenient.

• In set theory, here is an isomorphism between 
    A × B → C
and
    A → B → C

• This correspondence roughly holds for programming 
language types.
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A Simple Example

map : A        B  ->  C

map : (X - >Y) (list-of X) -> (list-of Y)

map’ : A   -> (B  ->  C)

map’ : (X -> Y) -> (list-of X) -> (list-of Y)
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Standard Map

(define map 
(lamba (f l)
  (cond 
    [(empty? l) empty]
    [else
      (cons (f (first l))
            (map f (rest l)))])) 
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Curried Map
• A definition in terms of map 

(define (map’ f)
  (lambda (l) (map f l)))

• When written from scratch, it looks almost exactly like 
map:

 (define map’
  (lambda (f)
    (lambda (l) 
      (cond
        [(empty? l) empty]

          [else (cons (f (first l))
                      (map f (rest l)))])) 
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Can We Define a Functional 
that Curries?

Unfortunately, we need a separate curry 
function for each function arity >= 2.

(define (curry f)
  (lambda (x)
    (lambda (y) (f x y))))
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Uncurry
• Question:  See if you can write 
  uncurry : (A -> (B -> C)) -> (A  B -> C)

• Note the equational properties:
 curry (uncurry f) = f
 uncurry (curry f) = f

• These are laws in mathematics, but the first fails in programming 
languages even when f is restricted to a value.  It doesn't hold in 
either CBN or CBV.  Why?
The left-hand side never throws an exception or diverges on the 
first application.

• Both equations fail if f can be an expression rather than a value 
of the appropriate type. Why?  The evaluation of the left hand 
side never diverges or generates an exception.

• Yet these equations are widely taught by PL experts as if PL 
domain theory was set theory.  They are NOT identities for PL 
code!
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The Crux of The Difference 
• Why don't functional languages obey standard laws 

from set theory?
• Eta-conversion fails in the PL world which admits 

divergent definitions.
• Eta-conversion is often added as an axiom to the λ-

calculus.  It does not disturb the major properties.
• Eta-conversion asserts:

   λx. Ex = E     (where x does not occur free in E)
• It fails even when the type of E is restricted to a unary 

function type.
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Bonus Material
Another Important Functional: Y

• lambda-notation (as in Scheme) indirectly supports 
recursion.  How?  A clever construction based on 
sophisticated mathematics (lambda-calculus).

• Short story: solutions to recursion equations are "fixed 
points".  Given the equation
  f(x) = Ef, (which is equivalent to f = λx. Ef)
what is the least solution f*?  Under proper conditions,
  f* = lub Fi(⊥)
where F(f) = λf.λx. Ef)) and ⊥ is the least-defined 
function (i.e., the function denoted by Ω).  Y is defined 
by Y(F) = f* where (f* is least solution of F(f*) = f*).
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Defining Y

• λ-calculus programming trick: use a variation on
   Ω = (self self)  k[(λx. f(x x)) (λx. f(x x))] = …(self self)
   (λx. f(x x)) (λx. f(x x)) = f[(x. f(x x)) (λx. f(x x))] 
= f 2[(λx. f(x x)) (λx. f(x x))] = …
= f k[(λx. f(x x)) (λx. f(x x))] = …

• In CBN languages 
  Y = λf . (λx. f(x x)) (λx. f(x x))

• CBV is slightly harder and messier because YF does not 
terminate.  Trick:  convert the term (λx. f(x x)) to 
(λx. [λy.f(x x))]y)  (eta-conversion of the diverging term).

• Default for λ-calculus is CBN.  Default for programming 
languages is CBV.
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Bonus Material: Other 
Powerful Functionals: S,K

• Every closed λ-expression can be written without 
any variables given the three primitive functionals S, 
K, I where

• S = λx.λy.λz. (xz)(yz)
• K = λx.λy. X
• I = λx.x

• In fact, you only need two because
• I = S(KK)

• Functionals defined by closed λ terms (and nothing 
else are called combinators.  Y (in all its varieties) 
is a combinator.
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For Next Class
• Homework due Friday
• Review of Scheme material in lecture on 

Wednesday and Friday.

• Reading:
• Review for coming exam which will be 

distributed on Friday.
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