Clever Programming With Functions

Prof. Robert "Corky" Cartwright Department of Computer Science Rice University

Using Functions to Represent Objects

 How can we represent a pair in Scheme so that the only operations that code can perform on pairs are:

```
(make-pair x y)
(pair-first p)
(pair-second p)
(pair-equal? p1 p2)
```

 What if we represent a pair as a list? As a struct? Structs are not as robust as you might think. In the advanced language level try:

```
(define-struct Pair (first second))
(define p (make-Pair 1 2))
(set-Pair-first! P 17)
p
```

Objects as closures

```
(define (make-pair x y)
 (lambda (msg)
    (cond [(equal? msg 'first) (lambda () x)]
        [(equal? msg 'second) (lambda () y)]
        [(equal? msg 'equal)
        (lambda (p)
                    (and (equal? (pair-first p) x)
                         (equal? (pair-second p) y)))]))))
(define (pair-first p) ((p 'first)))
(define (pair-second p) ((p 'second)))
(define (pair-equal? p1 p2) ((p1 'equal) p2))
```

This representation trick is very important. It shows how closures (functions with free variables treated as first-class data values) can be used to represent abstract (black-box) data types.

Useful Functionals

- . What is a *functional*? A function that takes a function as a argument and often returns a function. The differential and integral operators in calculus are functionals.
- . Important functionals in functional programming: map filter foldr foldl curry

The Idea Behind curry

Every function of the form

A B -> C
can be converted to a function of type
A -> (B -> C)

which is often more convenient.
In set theory, here is an isomorphism between A × B → C and

 $\mathsf{A}\to\mathsf{B}\to\mathsf{C}$

This correspondence *roughly* holds for programming language types.

A Simple Example

map : A $B \rightarrow C$ map : (X - >Y) (list-of X) -> (list-of Y)

 $map' : A \rightarrow (B \rightarrow C)$ $map' : (X \rightarrow Y) \rightarrow (list-of X) \rightarrow (list-of Y)$ **Standard Map**

```
(define map
 (lamba (f l)
   (cond
   [(empty? l) empty]
   [else
      (cons (f (first l))
                                (map f (rest l)))]))
```

Curried Map

- A definition in terms Of map (define (map' f)
 (lambda (l)) (map f l))
 - (lambda (l) (map f l)))
- When written from scratch, it looks almost exactly like map:

```
(define map'
  (lambda (f)
      (lambda (l)
        (cond
        [(empty? l) empty]
        [else (cons (f (first l))
                    (map f (rest l)))]))
```

Can We Define a Functional that Curries?

Unfortunately, we need a separate curry function for each function arity >= 2.

```
(define (curry f)
  (lambda (x)
      (lambda (y) (f x y))))
```

Uncurry

• Question: See if you can write

```
uncurry : (A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow C)
```

• Note the equational properties:

curry (uncurry f) = f uncurry (curry f) = f

 These are laws in mathematics, but the first fails in programming languages even when *f* is restricted to a value. It doesn't hold in either CBN or CBV. Why?
 The left-hand side never throws an exception or diverges on the

first application.

- Both equations fail if f can be an expression rather than a value of the appropriate type. Why? The evaluation of the left hand side never diverges or generates an exception.
- Yet these equations are widely taught by PL experts as if PL domain theory was set theory. They are NOT identities for PL code!

COMP 211, Spring 2009

The Crux of The Difference

- Why don't functional languages obey standard laws from set theory?
- Eta-conversion fails in the PL world which admits divergent definitions.
- *Eta*-conversion is often added as an axiom to the λ -calculus. It does not disturb the major properties.
- *Eta*-conversion asserts:

 $\lambda x. Ex = E$ (where x does not occur free in *E*)

• It fails even when the type of *E* is restricted to a unary function type.

Bonus Material Another Important Functional: **Y**

- Iambda-notation (as in Scheme) indirectly supports recursion. How? A clever construction based on sophisticated mathematics (lambda-calculus).
- Short story: solutions to recursion equations are "fixed points". Given the equation

 $f(x) = E_{f_{i}}$ (which is equivalent to $f = \lambda x$. E_{f})

what is the least solution f^* ? Under proper conditions, $f^* = \operatorname{Iub} F^i(\bot)$

where $F(f) = \lambda f \cdot \lambda x \cdot E_f$) and \perp is the least-defined function (i.e., the function denoted by Ω). Y is defined by $\mathbf{Y}(F) = f^*$ where (f^* is least solution of $F(f^*) = f^*$).

Defining Y

- λ -calculus programming trick: use a variation on
 - $\Omega = (self self) \ {}^{k}[(\lambda x. f(x x)) (\lambda x. f(x x))] = \dots (self self)$

 $(\lambda x. f(x x)) (\lambda x. f(x x)) = f[(\Box x. f(x x)) (\lambda x. f(x x))]$

- $= f^{2}[(\lambda x. f(x x)) (\lambda x. f(x x))] = ...$
- $= f^{k}[(\lambda x. f(x x)) (\lambda x. f(x x))] = \dots$
- In CBN languages $\mathbf{Y} = \partial f_{1} (\partial \mathbf{y}_{1} f(\mathbf{y}, \mathbf{y})) (\partial \mathbf{y}_{2})$

 $\mathbf{Y} = \lambda f \cdot (\lambda x \cdot f(x x)) (\lambda x \cdot f(x x))$

- CBV is slightly harder and messier because YF does not terminate. Trick: convert the term (λx. f(x x)) to (λx. [λy.f(x x))]y) (eta-conversion of the diverging term).
- Default for λ -calculus is CBN. Default for programming languages is CBV.

Bonus Material: Other Powerful Functionals: S,K

- Every closed λ-expression can be written without any variables given the three primitive functionals S, K, I where
 - $\mathbf{S} = \lambda x . \lambda y . \lambda z . (xz)(yz)$
 - $\mathbf{K} = \lambda x . \lambda y . X$
 - $I = \lambda x . x$
- In fact, you only need two because

• I = S(KK)

Functionals defined by closed λ terms (and nothing else are called combinators. Y (in all its varieties) is a combinator.

COMP 211, Spring 2009

For Next Class

- Homework due Friday
- Review of Scheme material in lecture on Wednesday and Friday.
- Reading:
 - Review for coming exam which will be distributed on Friday.