
 1

Clever Programming With Functions

Prof. Robert “Corky” Cartwright

Department of Computer Science

Rice University

 COMP 211, Spring 2009 2

Using Functions to Represent Objects

• How can we represent a pair in Scheme so that the only
operations that code can perform on pairs are:
 (make-pair x y)
 (pair-first p)
 (pair-second p)
 (pair-equal? p1 p2)

• What if we represent a pair as a list? As a struct? Structs
are not as robust as you might think. In the advanced
language level try:
 (define-struct Pair (first second))
 (define p (make-Pair 1 2))
 (set-Pair-first! P 17)
 p

 COMP 211, Spring 2009 3

Objects as closures
(define (make-pair x y)
 (lambda (msg)
 (cond [(equal? msg 'first) (lambda () x)]
 [(equal? msg 'second) (lambda () y)]
 [(equal? msg 'equal)
 (lambda (p)
 (and (equal? (pair-first p) x)
 (equal? (pair-second p) y)))])))
(define (pair-first p) ((p 'first)))
(define (pair-second p) ((p 'second)))
(define (pair-equal? p1 p2) ((p1 'equal) p2))

This representation trick is very important. It shows how closures
(functions with free variables treated as first-class data values) can
be used to represent abstract (black-box) data types.

 COMP 211, Spring 2009 4

Useful Functionals

• What is a functional? A function that takes a function as
a argument and often returns a function. The differential
and integral operators in calculus are functionals.

• Important functionals in functional programming:
 map filter foldr foldl curry

 COMP 211, Spring 2009 5

The Idea Behind curry
• Every function of the form
 A B -> C
can be converted to a function of type
 A -> (B -> C)
which is often more convenient.

• In set theory, here is an isomorphism between
 A × B → C
and
 A → B → C

• This correspondence roughly holds for programming
language types.

 COMP 211, Spring 2009 6

A Simple Example

map : A B -> C

map : (X - >Y) (list-of X) -> (list-of Y)

map’ : A -> (B -> C)

map’ : (X -> Y) -> (list-of X) -> (list-of Y)

 COMP 211, Spring 2009 7

Standard Map

(define map
(lamba (f l)
 (cond
 [(empty? l) empty]
 [else
 (cons (f (first l))
 (map f (rest l)))]))

 COMP 211, Spring 2009 8

Curried Map
• A definition in terms of map

(define (map’ f)
 (lambda (l) (map f l)))

• When written from scratch, it looks almost exactly like
map:

 (define map’
 (lambda (f)
 (lambda (l)
 (cond
 [(empty? l) empty]

 [else (cons (f (first l))
 (map f (rest l)))]))

 COMP 211, Spring 2009 9

Can We Define a Functional
that Curries?

Unfortunately, we need a separate curry
function for each function arity >= 2.

(define (curry f)
 (lambda (x)
 (lambda (y) (f x y))))

 COMP 211, Spring 2009 10

Uncurry
• Question: See if you can write
 uncurry : (A -> (B -> C)) -> (A B -> C)

• Note the equational properties:
 curry (uncurry f) = f
 uncurry (curry f) = f

• These are laws in mathematics, but the first fails in programming
languages even when f is restricted to a value. It doesn't hold in
either CBN or CBV. Why?
The left-hand side never throws an exception or diverges on the
first application.

• Both equations fail if f can be an expression rather than a value
of the appropriate type. Why? The evaluation of the left hand
side never diverges or generates an exception.

• Yet these equations are widely taught by PL experts as if PL
domain theory was set theory. They are NOT identities for PL
code!

 COMP 211, Spring 2009 11

The Crux of The Difference
• Why don't functional languages obey standard laws

from set theory?
• Eta-conversion fails in the PL world which admits

divergent definitions.
• Eta-conversion is often added as an axiom to the λ-

calculus. It does not disturb the major properties.
• Eta-conversion asserts:

 λx. Ex = E (where x does not occur free in E)
• It fails even when the type of E is restricted to a unary

function type.

 COMP 211, Spring 2009 12

Bonus Material
Another Important Functional: Y

• lambda-notation (as in Scheme) indirectly supports
recursion. How? A clever construction based on
sophisticated mathematics (lambda-calculus).

• Short story: solutions to recursion equations are "fixed
points". Given the equation
 f(x) = Ef, (which is equivalent to f = λx. Ef)
what is the least solution f*? Under proper conditions,
 f* = lub Fi(⊥)
where F(f) = λf.λx. Ef)) and ⊥ is the least-defined
function (i.e., the function denoted by Ω). Y is defined
by Y(F) = f* where (f* is least solution of F(f*) = f*).

 COMP 211, Spring 2009 13

Defining Y

• λ-calculus programming trick: use a variation on
 Ω = (self self) k[(λx. f(x x)) (λx. f(x x))] = …(self self)
 (λx. f(x x)) (λx. f(x x)) = f[(x. f(x x)) (λx. f(x x))]
= f 2[(λx. f(x x)) (λx. f(x x))] = …
= f k[(λx. f(x x)) (λx. f(x x))] = …

• In CBN languages
 Y = λf . (λx. f(x x)) (λx. f(x x))

• CBV is slightly harder and messier because YF does not
terminate. Trick: convert the term (λx. f(x x)) to
(λx. [λy.f(x x))]y) (eta-conversion of the diverging term).

• Default for λ-calculus is CBN. Default for programming
languages is CBV.

 COMP 211, Spring 2009 14

Bonus Material: Other
Powerful Functionals: S,K

• Every closed λ-expression can be written without
any variables given the three primitive functionals S,
K, I where

• S = λx.λy.λz. (xz)(yz)
• K = λx.λy. X
• I = λx.x

• In fact, you only need two because
• I = S(KK)

• Functionals defined by closed λ terms (and nothing
else are called combinators. Y (in all its varieties)
is a combinator.

 COMP 211, Spring 2009 15

For Next Class
• Homework due Friday
• Review of Scheme material in lecture on

Wednesday and Friday.

• Reading:
• Review for coming exam which will be

distributed on Friday.

	Clever Programming With Functions
	Using Functions to Represent Objects
	Objects as closures
	Useful Functionals
	Idea Behind curry
	A Simple Example
	Standard Map
	Curried Map
	Can We Define a Functional that Curries?
	Uncurry
	Slide 11
	Bonus Material Another Important Functional: Y
	Defining Y
	Bonus Material Other Powerful Functionals: S,K
	For Next Class

