
 1

On to Java!

Corky Cartwright
Department of Computer

Science
Rice University

COMP 211, Spring 2010 2

From Scheme to Java
• Scheme and Java look completely different
• Don't be fooled. Java is very Scheme-like

underneath (perhaps excessively so).
• Self-identifying data
• Implicit sharing of objects (discouraging mutation);

assignment does not copy!
• C++ → Java?

• In the Rice curriculum.
• In industry. Java/C# is dominant. Anachronisms in

the JVM have blunted Java dominance somewhat.

• DrScheme → DrJava

COMP 211, Spring 2010 3

Erratum on Exam 1

Erratum on Exam 1
On p. 5, the parenthetical sentence should read:
(Recall that a Scheme value is a legal Scheme
expression that cannot be reduced.)

Mistake in Grading HW 3
Problem 16.3.3 was graded on a 20 pt scale when it
should have been graded on a 10 pt scale.

COMP 211, Spring 2010 4

Java Notation

• Lots of warts thanks to C/C++ syntax. After an
immigration period, they become only minor
annoyances.

• What is a Java program? A collection of classes.
• What is a class? Rough answer: a Scheme struct on

steroids. Instead of writing functions that manipulate
structs, you add "methods" to a class. The methods
are attached to each object in the class so they can
directly refer to members (fields) of the class.

• All Java code belongs to some class.

COMP 211, Spring 2010 5

Guiding Vision
• Program design in Java is data-directed.

Design the data abstractions first; they will
determine the structure of the code. In OOP
circles, this data design process is often
called object-modeling.

• Software development is incremental and
test-driven. Essentially the same design
recipe.

• Key to OO approach: common data and
programming abstractions are codified as
design patterns (much like our templates).

COMP 211, Spring 2010 6

Secondary Theme: DrJava
• DrJava, our lightweight, reactive

environment for Java, was created
specifically to foster learning to program in
Java.

• DrJava facilitates active learning; with DrJava
learning Java is a form of exploration.

• DrJava is not a toy; DrJava is developed
using DrJava. It includes everything that we
believe is important and nothing more.

COMP 211, Spring 2010 7

What Is an Object?
• Collection of fields representing the

properties of a conceptual or physical
object.

• Collection of operations called methods for
observing and changing the fields of the
object.

These fields and methods often called the
members of the object.

COMP 211, Spring 2010 8

How Are Objects Defined?
• All objects are created using templates (cookie

cutters) just like Scheme structs.
• Instead of writing define-struct statements, we

write class definitions.
• Since all code is contained within a class, class

definitions tend to be much richer (and more
complex in real world examples) that define-
struct statements. After all, the code that would
be written in function definitions in Scheme must
be written as methods of some class.

COMP 211, Spring 2010 9

Example: a Phone
Directory
• Task: maintain a directory containing the

office address and phone number for each
person in the Rice Computer Science Dept.

• Each entry in such a directory has a natural
representation as an object with three fields
containing a person’s

• name
• address
• phone number

represented as character strings.

COMP 211, Spring 2010 10

Summary of Entry Data

• Fields:
• String name
• String address
• String phone

• Accessed only through implicitly
generated methods:

• String name()
• String address()
• String phone()

COMP 211, Spring 2010 11

Entry Demo in DrJava

• Write DrJava class code
• Create an object
• How do we perform any

computation with it?

COMP 211, Spring 2010 12

Java Method Invocation

• A Java method m is executed by sending a
method invocation (method call)
 o.m()

to an object o, called the receiver. The
method m must be a member of o.

The code defining the method m can refer to
the entire receiver object using the keyword
this.

COMP 211, Spring 2010 13

Method Invocation Demo

• Apply some auto-generated methods to an
Entry

• How do we build up expressions from
method invocations?

• Apply operators (built-in to Java) on primitive
types (int, double, boolean)

• Invoke methods

COMP 211, Spring 2010 14

Java Expressions

• Java supports essentially the same
expressions over primitive types (int,
double, boolean) as C/C++.

• Notable differences:
• boolean is a distinct type from int
• no unsigned version of integer types
• explicit long type

COMP 211, Spring 2010 15

Defining (Instance) Methods

• Recall our definition of the Entry
class. How can we add methods to
this class?

• Suppose we want Entry to support a
method:
 boolean match(String keyname)
invoked by syntax like
 e.match("Corky")

COMP 211, Spring 2010 16

Method Definition Demo

• Method syntax is C-like.
• Comment notation:

• // opens a line comment (like ";" in
Scheme)

• Block comments are enclosed in /* … */

COMP 211, Spring 2010 17

Code for Entry with match

class Entry {
 /* fields */
 String name, address, phone;

 /** return true iff name matches keyName.*/
 boolean match(String keyName) {
 return keyName.equals(name));
 }
}

COMP 211, Spring 2010 18

For Next Class
• Exams due Friday
• Optional Homework due next Monday
• Labs introducing Java this week
• Reading: OO Design Notes, Ch 1.1 - 1.4.2.

	On to Java!
	From Scheme to Java
	Slide 3
	Java Notation
	Guiding Vision
	Secondary Theme: DrJava
	What Is an Object?
	How Are Objects Defined?
	Example: a Phone Directory
	Summary of Entry Format
	Entry Demo in DrJava
	Java Method Invocation
	Method Invocation Demo
	Java Expressions
	Defining (Instance) Methods
	Method Definition Demo
	Code for Entry with match
	For Next Class

