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From Scheme to Java
• Scheme and Java look completely different
• Don't be fooled.  Java is very Scheme-like 

underneath (perhaps excessively so).
• Self-identifying data
• Implicit sharing of objects (discouraging mutation); 

assignment does not copy!
• C++ → Java?

• In the Rice curriculum.
• In industry.  Java/C# is dominant. Anachronisms in 

the JVM have blunted Java dominance somewhat.

• DrScheme → DrJava
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Erratum on Exam 1

Erratum on Exam 1
On p. 5, the parenthetical sentence should read:
(Recall that a Scheme value is a legal Scheme 
expression that cannot be reduced.)

Mistake in Grading HW 3
Problem 16.3.3 was graded on a 20 pt scale when it 
should have  been graded on a 10 pt scale.
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Java Notation

• Lots of warts thanks to C/C++ syntax.  After an 
immigration period, they become only minor 
annoyances.

• What is a Java program?  A collection of classes.
• What is a class?  Rough answer: a Scheme struct on 

steroids.  Instead of writing functions that manipulate 
structs, you add "methods" to a class.  The methods 
are attached to each object in the class so they can 
directly refer to members (fields) of the class.

• All Java code belongs to some class.
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Guiding Vision
• Program design in Java is data-directed.

Design the data abstractions first; they will 
determine the structure of the code.  In OOP 
circles, this data design process is often 
called object-modeling.

• Software development is incremental and 
test-driven.  Essentially the same design 
recipe.

• Key to OO approach: common data and 
programming abstractions are codified as 
design patterns (much like our templates).
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Secondary Theme: DrJava
• DrJava, our lightweight, reactive 

environment for Java, was created 
specifically to foster learning to program in 
Java.

• DrJava facilitates active learning; with DrJava 
learning Java is a form of exploration.

• DrJava is not a toy; DrJava is developed 
using DrJava.  It includes everything that we 
believe is important and nothing more.
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What Is an Object?
• Collection of fields representing the 

properties of a conceptual or physical 
object.

• Collection of operations called methods for 
observing and changing the fields of the 
object.

These fields and methods often called the 
members of the object.
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How Are Objects Defined?
• All objects are created using templates (cookie 

cutters) just like Scheme structs.
• Instead of writing define-struct statements, we 

write class definitions.
• Since all code is contained within a class, class 

definitions tend to be much richer (and more 
complex in real world examples) that define-
struct statements.  After all, the code that would 
be written in function definitions in Scheme must 
be written as methods of some class.
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Example: a Phone 
Directory
• Task: maintain a directory containing the 

office address and phone number for each 
person in the Rice Computer Science Dept.

•  Each entry in such a directory has a natural 
representation as an object with three fields 
containing a person’s

• name 
• address 
• phone number 

represented as character strings.
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Summary of Entry Data

• Fields:
• String name
• String address
• String phone

• Accessed only through implicitly 
generated methods:

• String name()
• String address()
• String phone()
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Entry Demo in DrJava

• Write DrJava class code
• Create an object
• How do we perform any 

computation with it?
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Java Method Invocation

• A Java method m is executed by sending a 
method invocation (method call)
    o.m()

to an object o, called the receiver.  The 
method m must be a member of o.

The code defining the method m can refer to 
the entire receiver object using the keyword 
this. 
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Method Invocation Demo

• Apply some auto-generated methods to an 
Entry

• How do we build up expressions from 
method invocations?

• Apply operators (built-in to Java) on primitive 
types (int, double, boolean)

• Invoke methods 
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Java Expressions

• Java supports essentially the same 
expressions over primitive types (int, 
double, boolean) as C/C++.

• Notable differences:
•  boolean is a distinct type from int
• no unsigned version of integer types
• explicit long type
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Defining (Instance) Methods

• Recall our definition of the Entry 
class.  How can we add methods to 
this class?

• Suppose we want Entry to support a 
method:
  boolean match(String keyname)
invoked by syntax like
  e.match("Corky")
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Method Definition Demo

• Method syntax is C-like.
• Comment notation:

• // opens a line comment (like ";" in 
Scheme)

• Block comments are enclosed in /* … */
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Code for Entry with match

class Entry {
  /* fields */
  String name, address, phone;

  /** return true iff name matches keyName.*/
  boolean match(String keyName) {
    return keyName.equals(name));
  }
}
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For Next Class
• Exams due Friday
• Optional Homework due next Monday
• Labs introducing Java this week
• Reading:  OO Design Notes, Ch 1.1 - 1.4.2.
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