
 1

Static Class Members and Singletons

Corky Cartwright

Department of Computer Science

Rice University

2

 Review
• Primitive types: int long short byte double float char boolean

– For every primitive type, there is a corresponding wrapper class

int Integer

long Long

double Double

boolean Boolean

char Character

short Short

byte Byte

– java will generally wrap (box) / unwrap (box) values/objects of
primitive/wrapper type. Exception: Java does not unbox wrapper
objects if the type of the expression is larger than the wrapper type,
e.g., Object

Examples: see demo

3

 Review cont.
• Java is much more idiosyncratic than Scheme. If you

are confused about some aspect of Java notation, please
ask a course staff member or a more experienced
classmate. You can also look it up in the online
references listed in the course wiki (or by doing a web
search). With a bit of practice, Java notation will
become familiar (if occasionally puzzling).

• The DrJava functional language level hides some but not
all of the grief.

• Read the class notes on OO design and do all of the
finger exercises.

4

DrJava Language Levels

In this lecture, we will use a larger subset of the DrJava functional language
level. The names of functional language level files end in the file extension
.dj. You can also use the legacy file extensions .dj0 and .dj1 which can
be useful if you want to maintain several versions of the same file. DrJava will
ask you if you want to save such such files using the newer .dj. file
extension. If you want to retain the legacy file extension, answer “No”.
New constructs:

The static, public, and private visibility attributes for classes and
methods. By default, Java classes and methods have “default” (also called
“package”) visibility. Since we are putting all of classes in the default (also
called “empty”) package, there is no reason for us to use the publicT
visibility attribute with one exception. The JUnit framework requires that
test classes be public. The functional language level adds the public
attribute for test classes if it not already present.

5

static Class Members
• Almost all of the fields and methods that we have seen thus far

have been attached to Java objects (class instances), but fields
and methods can also be attached to Java classes. Such fields
and methods and called static class members.

• We will defer discussing static methods.
• static fields are used primarily to store constants associated with

a class. Why static? We only need one copy of a constant. It
is wasteful to create a copy in every object of a class. You have
already seen a few static fields in the context of Java libraries.
The fields MAX_VALUE and MIN_VALUE, which are present in all of
the wrapper classes except Boolean, are static.

6

private Class Members
Any static or dynamic (instance) field or method can be marked as
private. A private field is visible only within the class in which it is defined.
 We use private much like Scheme local but confining a variable's scope
to a class is much less restrictive that confining it to an expression. We will
defer discussing static methods until later in the course; they are not very
important.

private members are used primarily for methods and fields that only concern
the class containing them, e.g. help methods. Note that in the context of the
composite pattern, we cannot make a help method private, because the
method must be visible in all of the classes in the composite hierarchy.

Private help methods cannot be tested from a separate class BUT they can
be tested using test code within the method's class. We will not use this
feature of JUnit (@test annotations) in this class but you will probably
encounter it in more advanced courses. Hence, we do not recommend using
private methods (except constructors) in this class.

7

The Singleton Pattern

An important application of the static
and private attributes is the singleton
pattern. Each execution of the expression
new EmptyIntList()

creates a new object. In principle, there
is only one empty list, just like there is
only one number 0. Hence, we would
like to represent the empty list by a
single object.

8

Implementing Singleton

A unique instance of a class (singleton
pattern) can be created using two chunks
of code:
• a static field in the class that holds the single

instance of the class
• a private attribute on the class constructor,

so no client can create another instance of the
class.

9

Singleton IntList
abstract class IntList {
 abstract IntList sort();
 IntList cons(int n) { return new ConsIntList(n, this); }
 abstract IntList insert(int n);
}

class EmptyIntList extends IntList {
 static EmptyIntList ONLY = new EmptyIntList();
 private EmptyIntList() { }
 IntList sort() { return this; }
 IntList insert(int n) { return cons(n); }
}

class ConsIntList extends IntList {
 int first;
 IntList rest;
 IntList sort() { return rest.sort().insert(first); }
 IntList insert(int n) {
 if (n <= first) return cons(n);
 else return rest.insert(n).cons(first);
 }
}

Static member holding the unique instance

Private constructor

10

For Next Class
• Exam due Wednesday in class
• Optional Homework 6 due at midnight

Wed (technically Thursday)
• Lab tomorrow
• Easy Homework due Monday
• Reading: OO Design Notes, Ch. 1.6-1.8.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

