
1

Exception Handling and Functions as Data

Corky Cartwright
Stephen Wong

Department of Computer
Science

Rice University

2

Errors and Exceptions in Java

• In Java, the common supertype
Throwable includes all error values and
exception values.

Case 2

Case 3

Case 1

Case 1: Subclass RuntimeException
• Used for error conditions that a program may want to

handle, but are not part of a method’s contract e.g.,
• NullPointerException
• IndexOutOfBoundsException
• ArithmeticException (e.g., divide by zero)
• NegativeArraySizeException
• ArrayStoreException
• ClassCastException
• IllegalArgumentException

We will primarily use RuntimeException (Case 1) in this
course except when the use of a library dictates the use
of Case 2 or Case 3. In practice, a checked exception
(Case 2) is a bad idea.

3

Example
Assume that we extend our IntList class hierarchy to include the method rest() in
class IntList as follows:
/** IntList ::= EmptyIntList | ConsIntList(int, IntList). */
abstract class IntList {
 /** @return rest of this assuming this is non-empty. */
 IntList rest() { return ((ConsIntList) this).rest();
 /** Sorts this IntList into ascending (non-descending) order. */
 abstract IntList sort();
 /** Adds the int n to the front of this IntList. */
 IntList add(int n) { return new ConsIntList(n, this); }
 /** Inserts n in order, given this is sorted in ascending order. */

 abstract IntList insert(int n);
}

What does EmptyIntList.ONLY.rest() return?

A ClassCastException

COMP 211, Spring 2010 4

Unhandled Exceptions
• An Unhandled Exception results in

program exit with a stack trace e.g.,
Exception in thread "main"
java.lang.ArithmeticException: / by zero
at T1.foo(T1.java:50)

. . .
• The line numbers in the stack trace

can help you locate the source of the
error

5

Handled Exceptions
• The programmer has the option of handling

exceptions in Java with a try-catch statement. In
most cases, unchecked exceptions correspond to
coding errors. In large systems (like DrJava), it is
common to have a top-level exception handler that
logs the exception, perhaps updates the GUI to
indicate that an error has happens, and recovers to
the last valid program state.

• In some cases, the program may catch the
exception near its source and return a value
indicating failure or perform a failure action.

 6

Throwing Exceptions

7

• The programmer also has the option of
throwing instances of RuntimeException for
user-defined errors e.g.,

class T2 {

 int x;

 . . .

 float bar(int y) {

 if (y < 0) throw new ArithmeticException(“Negative arg”);

 n = y/x; // throws ArithmeticException if x = 0

 return n;

 }

}

Argument of throw statement
must be of type Throwable

8

 Exception Objects

• In Java, exceptions are conventional objects,
and can be created by expressions of the
form

 new <exception-class>(<arg1>, ..., <argn>)
• Examples
throw new IllegalArgumentException
("max applied to an empty list")

throw new java.util.NoSuchElementException
(”no more elements")

9

Type Casts and ClassCastException

• Java supports type casts (checks) for cases when the
declared or inferred type of an expression is weaker
than what is required for a particular computation.

• (<type>) <expr> simply converts the type of <expr> to
<type> for type-checking purposes. If the value of
<expr> does not have type <type>, the computation
throws a ClassCastException.

• If the cast needs to be performed repeatedly, it is also
possible to assign <expr> to a new variable declared to
be of <type>.

• Example: consider the merge method on IntList for
the current homework (HW7) written using the
conventional Scheme solution. (This code is not a valid
solution to the homework problem! In the homework,
you must use dynamic dispatch instead of if.)

10

merge Example
abstract class IntList {
 IntList cons(int n) { return new ConsIntList(n, this); }
 abstract IntList merge(IntList other);
}

class EmptyIntList extends IntList {
 static EmptyIntList ONLY = new EmptyIntList();
 private EmptyIntList() { }
 IntList merge(IntList other) { return other;}
}

class ConsIntList extends IntList {
 int first;
 IntList rest;
 IntList merge(IntList other) {
 if (other == EmptyIntList.ONLY) return this;

 ConsIntList o = (ConsIntList) other; // cast operation
 if (first <= o.first()) return rest.merge(o).cons(first);
 else return merge(o.rest()).cons(o.first());
 }
}

COMP 211, Spring 2010 11

 Casting vs. Compiler Type-Checking

The type-checking in the Java compiler disallows
casts
 (<type>) <expr>
where <type> is an object type and the static type of
<expr> and <type> do not overlap (other than null)

For example
ConsIntList o = (ConsIntList) new EmptyIntList();

will result in a compile-time error

12

Cases 2 and 3

• Case 2: subtype of Exception, but not a
subtype of RuntimeException (also called
“checked exceptions”)

• Case 3: Error

Case 2

Case 3

Case 1

Case 2: Checked Exceptions
• Used for error conditions that a program may want

to handle, and that are also explicitly part of a
method’s contract e.g.,

void foo() throws MyException { . . . }
• The Java compiler enforces the following rules on

checked exceptions
• Every method that throws a checked exception must

advertise it in the throws clause in its method definition
• Every method that calls a method that advertises a

checked exception must either handle that exception
(with try and catch) or must in turn advertise that
exception in its own throws clause.

13

Checked Exceptions: a Bad Idea
• ML, a statically typed alternative to Scheme, was designed

long before Java and includes an extensive exception facility.
 In ML all exceptions are unchecked. Why?

• If you include exceptions in the type system, program typing
becomes very brittle. A trivial refactoring transformation or
an insertion of simple debugging code (e.g., to print a
message to a file) can break type correctness. This problem
continually arises in developing Java programs. When I
defend Java as a good language for real world software
development, my research colleagues (who only program in
ML) jump on this issue. In these discussions, I concede that
the designers of Java may have been stupid in some respects
but still produced a decent language.

14

Case 3: Errors
• Subtypes of Error are used to identify error conditions

that normal programs (including all your programs!)
are not expected to handle.

• One direct subtype of Error is VirtualMachineError,
which in turn includes the following direct subtypes
• InternalError
• OutOfMemoryError
• StackOverflowError
• UnknownError

• A VirtualMachineError is “thrown to indicate that
the Java Virtual Machine is broken or has run out of
resources necessary for it to continue operating”

15

16

Encoding First-class Functions in Java

• Java methods are not data values; they
cannot be used as values.

• But java classes include methods so we
can indirectly pass methods (functions)
by passing an appropriate class
implementing an interface type that is
designed exclusively to represent Java
functions.

• Example: Scheme map

17

Interfaces for Representing Functions

For accurate typing, we need different interfaces for
different arities. With generics, we can define
parameterized interfaces for each arity. For now,
we will have to define a loosely typed interface for
each arity. Here is the code for map:
interface UnaryFun {
 Object apply(Object arg); // Object -> Object
}
abstract class ObjectList {
 ObjectList cons(Object n) {
 return new ConsObjectList(n, this);
 }
 abstract ObjectList map(UnaryFun f);
}
 ...

COMP 211, Spring 2010 18

 Representing Specific Funcions

• For each function that we want to use a value, we must
define a class, preferably a singleton. Since the class
has no fields, all instances are effectively identical.

• Java provides a lightweight notation for singleton
classes called anonymous classes. Moreover these
classes can refer to fields and final method variables
that are in scope.

• Anonymous class notation:

new <type>() {
 <member1>
 ...
 <membern>
}

COMP 211, Spring 2010 19

Anonymous Class Example

new UnaryFun() {
 Object apply(Object arg) {

 // Return a list containing arg
 return EmptyObjectList.ONLY.cons(arg);
 }
}

There are pending proposals to provide
better notation for lambda abstractions.

COMP 211, Spring 2010 20

Free Variables in Anonymous Classes

• What do free variables mean inside
anonymous classes? What do they mean
in λ-expressions?

• In Java, the free variables can be either:
• fields, or
• local (method) variables.

• Use them in doing the filter problem in
HW8.

21

Another Anonymous Class Example

class FunUtils {

 UnaryFun compose(UnaryFun f, UnaryFun g) {

 return new UnaryFun() {

 Object apply(Object o) {

 return f.apply(g.apply(o));

 }

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

