
1

Visitors, Visitors, Visitors …

Corky Cartwright
Department of Computer Science

Rice University

COMP 211, Spring 2009 2

Review: the Visitor Pattern
• Externalizes the interpreter pattern for defining operations on
composite pattern hierarchies.

• In principle, all recursively defined operations on a composite
hierarchy can be defined using visitors. Is this a good idea?

• Probably not. The visitor pattern adds modest additional
computational overhead (more method calls, notation) which
may not be entirely eliminated by the JIT compiler. It also
adds notational overhead (.accept(new Method Visitor(...))
instead of .method(...)). Simple, intuitively intrinsic
operations should probably be defined using the interpreter
pattern. When designing a composite hierarchy, define a set of
simple basic operations using the interpreter pattern and define
everything else using visitors. It is a judgment call.

COMP 211, Spring 2009 3

Example: Functional Lists
• Primitive operations:

int length();
boolean contains();
List concat(List other);
List reverse();
List eltAt(int i);
List subList(int i, int len);
ListIterator iterator();

List sort();
List merge(List other);
List sort(Comparator c);
List merge(Comparator c, List other);

COMP 211, Spring 2009 4

Road Map for Remainder of Course
• Friday: full Java for our Intermediate Level subset. What

extra code do we have to write in full Java? Constructors,
accessors, toString(), equals(…), hashCode() , visibility
modifiers, final modifier.

• Monday: simple generic types. Complex generics are
beyond the capacity even of the Java language designers.
See …

• Wednesday: more Java mechanics for functional code:
• Static members of classes
• Checked vs. unchecked exceptions

• Friday: imperative Java including mutation,
arrays/vectors, loops.

COMP 211, Spring 2009 5

Road Map for Remainder of Course
• Friday: full Java for our Intermediate Level subset. What extra code do we have

to write in full Java? Constructors, accessors, toString(), equals(…),
hashCode() , visibility modifiers, final modifier.

Next Week:
• Monday: simple generic types. Complex generics are beyond the capacity even

of the Java language designers. See TechRepublic blurb
• Wednesday: more Java mechanics for functional code:

• Static members of classes
• Checked vs. unchecked exceptions
• Nested and inner classes.

• Friday: imperative Java including mutation, arrays/vectors, loops.
Following Weeks:
• Mutable Linear Data Structures and Trees
• Sorting and Searching including Hashing and Search Trees
• Memoization and Dynamic Programming
• Concurrency and Event Driven Programming

COMP 211, Spring 2009 6

For Next Class
• Homework Due.
• Please report problems with DrJava

Language Levels.

