
1

Visibility, Type Checking and Generics

Corky Cartwright
Department of Computer Science

Rice University

COMP 211, Spring 2009 2

Simple Visibility
• Four visibility modifiers in Java

• default (package)
• public
• private
• protected

• Visibility modifiers apply to classes and class members
• In simple student programs, default would suffice except for:

• Java constraint on interface members: must be public
• JUnit insists that test classes and the test methods they contain are public.
• Overriding the member of a class cannot narrow its visibility. Some

methods inherited from Object like equals and toString are public
• DrJava language levels conversion promotes default visibility for

methods to public except for instance fields which are made
private. Elementary level prohibits explicit modifiers.

COMP 211, Spring 2009 3

Full Java Visibility
• Java supports an infinite number of distinct namespaces called

packages. Each package has a name consisting of a sequence of
conventional Java identifiers (names) separated by periods, e.g.,
java.lang. We have been using (and will continue to use) the
default package which has no name.

• Libraries and frameworks (except those developed by Sun as
part of the Java core libraries) almost always use package
names that begin with the name of the organization that created
it, e.g., edu.rice.cs.drjava.

• Named packages are useful in building production (industrial
strength) software but not is simple pedagogic programs.

• We defer discussing the interaction between packages and
visibility until later in the course.

COMP 211, Spring 2009 4

Static Type Checking
• A static type system consists of a collection of local rules specifying the

syntactic form of programs. Excluding generics, Java type rules are
straightforward and intuitive:

• Variables and methods always have their declared types.
• If the context of an expression requires a given type, an expression of

some subtype may be used instead. Examples: passing an Integer
argument to a method that has a parameter of Object type.

• Cast expressions have the type specified in the cast. Casting to a
disjoint type is forbidden.

• Conditional expressions return the least upper bound of the consequent
and alternative types.

• The type (signature) of an overriding method must exactly match the
overridden method except that the output type can be narrowed
(restricted) in an overriding method. Example: see file IntList.dj1
where the output type of Object forEmptyIntList(EmptyIntList host)
is narrowed in visitors.

COMP 211, Spring 2009 5

Generics in a Nutshell
• A generic class (interface) is a class parameterized by types T,
U, … most often a single type T, e.g. List<T>

• Within a generic class, the type parameters can be used like
conventional types (almost).

• Outside a generic class, clients always refer to instantiations
of the class, e.g. List<Integer>

• Generic clients can use their type parameters in such
instantations, e.g., the code in List<T> can refer to
EmptyList<T>

• Static members of a generic class are not in the scope of the
classes type parameters.

• Generics are not available in DrJava language levels.

COMP 211, Spring 2009 6

Examples:
• See List<E>, ListVisitor<E, R>, … etc., in
List.java in the entry for this lecture on course
webpage.

COMP 211, Spring 2009 7

Generics in a Nutshell, cont.
• Every type parameter has a fixed upper bound. The default is
Object but other bounds are sometimes necessary. Bounds
are specified using an extends clause after the binding
occurrence of the type parameter, e.g., T extends Number

• Bounds can refer to the type parameter being bound.
Example: look at Enum<E> in java.lang

• class Enum<E extends Enum<E>>
• Read about Enum at sun.com

COMP 211, Spring 2009 8

Generics in a Nutshell, cont.
• A Java class may contain polymorphic (generic) methods

parameterized by types T, U, … (typically only one), e.g.,
abstract <R> R accept(ListVisitor<E,R> v);
The scope of the type parameter is restricted to the method
definition (return type, parameter list, body).

• The class containing a polymorphic method is not necessarily
generic.

• The type parameters for a polymorphic method are separately
bound at each call site.

• The bindings of polymorphic method type parameters are
typically inferred by the Java compiler.

• Study the accept methods in the example file List.java

COMP 211, Spring 2009 9

For Next Class
• Homework due on Friday. It consists of doing

HW6 in Java given a Scheme solution.
• Full answer involves using the visitor pattern.
• Suggestion: do the problem using the interpreter

pattern first to write the equivalent of the Scheme
functions in the solution that process boolean
formulas (represented as abstract syntax trees).

• Convert these methods to visitor objects once you
have the program working. If you can't get
visitors to work, a flawless interpreter based
solution with get 85% credit for the assignment.

