Anonymous Inner Classes and

!’_ Task Decomposition

Corky Cartwright
Vivek Sarkar
Department of Computer Science
Rice University

i Acknowledgments

CISC370 course taught by Chris Fischer,
U.Delaware (Lecture 9)

“Introduction to Concurrent Programming in Java’,
Joe Bowbeer, David Holmes, OOPSLA 2007

tutorial slides
Contributing authors: Doug Lea, Brian Goetz

COMP 211, Spring 2010 2

Code Example: Bilterator
class from BiList.java (HW 10)

private class Bilterator implements BilteratorI<T> {

Node<T> current;
BiIterator () {

current = Bilist.this.head.succ; // current is first item (if it exists)
}
public void first () ({

current = Bilist.this.head.succ; // current is first item (if it exists)
}
public void last() {

current = BiList.this.head.pred; // current is last item (if it exists)

public void next() { current = current.succ; } // wraps around end
public void prev() { current = current.pred; } // wraps around end

COMP 211, Spring 2010 3

Code Example: Bilterator
class from BiList.java (cont.)

public T currentItem() {
if (current == BiList.this.head) {
throw new
IteratorException ("No current element in " + BiList. this);

}

return current.item;

}

public boolean atEnd() { return current == BiList.this.head; }
} // Bilterator

COMP 211, Spring 2010

i Inner Classes

. An Inner class is a class defined inside of another class.

. Why would anyone want to do that?

- An Inner class object can access the
implementation of the object that created it —
including private fields

. Inner classes can be hidden from other classes in
the same package

. Anonymous inner classes are frequently used for
creating event callbacks, and for task

decomposition i parallel programming i

How to declare a named inner class

You declare a named inner class like any other member

class ICExample ({
private class thisIsAnInnerClass { //THIS IS THE INNER CLAS

// define a class here

}

COMP 211, Spring 2010 6

Referring to members of Outer
Classes

With inner classes, you can refer to members of an outer class
using the outer class’ name (if necessary for disambiguation)

public void actionPerformed (ActionEvent e) {
// inside the inner class

double interest = <OuterClassName>.balance * this.interestRate;

<OuterClassName>.balance += interest;

}
The balance field is a private member of the outer class.

COMP 211, Spring 2010 7

i Local Inner classes

You can declare an inner class inside of a method, just like
you could declare a local variable.

A local inner class can refer to final members of the
enclosing class, and to final local variables in the
enclosing method

When using a local inner class, if you only want to make

one instance of it, you don’t even need to give it a name
This is known as an anonymous inner class

These are convenient for event programming and parallel

programming

However, the syntax is extremely cryptic ...
COMP 211, Spring 2010 8

Anonymous Inner classes

public void start(final double rate)

{

ActionListener adder = new
ActionListener()
{

public void actionPerformed(ActionEvent evt)

{

double interest = balance * rate / 100;
balance += interest;

b
s
Timer t = new Timer(1000, adder);
t.start();

This is saying, construct a new object of a class that
implements the ActionListener interface, where the one
required method (actionPerformed) is defined inside the

brackets. COMP 211, Spring 2010

i Anonymous Inner classes

. You have to look very carefully to see a
difference between construction of a
new object, and construction of a new
iInner class extending a class.

//A person object

Person queen=new Person(‘“Mary”’); //Person Object
//An object of an inner class extending Person

Person count = new Person(“Frankenstein™) { //class code here};

COMP 211, Spring 2010 10

Anonymous Classes

For each function that we want to use as a value, we must
define a class, preferably a singleton. Since the class has no
fields, all instances are effectively identical.

Java provides a lightweight notation for singleton classes called
anonymous classes. Moreover these classes can refer to fields
and final method variables that are in scope.

Anonymous class notation:

hew <type>() {
<member,>

<member >

COMP 211, Spring 2010

11

*Anonymous Class Example

final Integer negativeOne = new Integer(-1);
ObjectList oll = . . .;
ObjectList ol2 = oll.map(

new UnaryFun() { // Anonymous inner class
Object apply(Object arg) {

if (arg.predicate())
return EmptyObjectList.ONLY.cons(arg);

else
return negativeOne; // Free variable

);

COMP 211, Spring 2010

12

Free Variables in Anonymous

ﬁ Classes

. What do free variables mean inside anonymous
classes? What do they mean in A-expressions?

. In Java, the free variables can be either:
. fields, or

. local (method) variables.

COMP 211, Spring 2010 13

ﬁ Java’s Callable Interface

Introduced in J2SE 5.0 in java.util.concurrent package
(remember to “import java.util.concurrent;”)

public interface Callable<V> {
/**

* Computes a result, or throws an exception.

*

* @dreturn computed result

* @throws Exception if unable to compute a result
*/
V call() throws Exception;

COMP 211, Spring 2010

14

Task Decomposition using

ﬁ Callable

//

//

HTML renderer before decomposition
ImageData imagel = imagelInfo.downloadImage (1) ;

ImageData image?2 = imagelInfo.downloadImage (2) ;

renderImage (imagel) ;

renderImage (image?) ;

HTML renderer after task decomposition
Callable<ImageData> taskl = new Callable<ImageData> () {

public ImageData call() {return imageInfo.downloadImage(l);}};
Callable<ImageData> task2 = new Callable<ImageData> () {

public ImageData call () {return imagelInfo.downloadImage (2);1}};
renderImage (taskl.call());
renderImage (task2.call());

COMP 211, Spring 2010 15

‘-L Food for thought

. What have we achieved by replacing
“renderlmage(image1);” by
“renderlmage(task1.call());” ?

. When is it legal to perform this kind of
substitution in a program? When is it
not?

COMP 211, Spring 2010 16

