
Anonymous Inner Classes and
 Task Decomposition

Corky Cartwright
Vivek Sarkar

Department of Computer Science
Rice University

 Acknowledgments
CISC370 course taught by Chris Fischer,
U.Delaware (Lecture 9)
http://www.cis.udel.edu/~cfischer/cisc370/

“Introduction to Concurrent Programming in Java”,
Joe Bowbeer, David Holmes, OOPSLA 2007
tutorial slides
Contributing authors: Doug Lea, Brian Goetz

2 COMP 211, Spring 2010

Code Example: BiIterator
class from BiList.java (HW 10)

 private class BiIterator implements BiIteratorI<T> {
 Node<T> current;
 BiIterator() {
 current = BiList.this.head.succ; // current is first item (if it exists)
 }
 public void first() {
 current = BiList.this.head.succ; // current is first item (if it exists)
 }
 public void last() {
 current = BiList.this.head.pred; // current is last item (if it exists)
 }

 public void next() { current = current.succ; } // wraps around end
 public void prev() { current = current.pred; } // wraps around end

COMP 211, Spring 2010 3

 Code Example: BiIterator
class from BiList.java (cont.)

 public T currentItem() {
 if (current == BiList.this.head) {
 throw new
 IteratorException("No current element in " + BiList.this);
 }
 return current.item;
 }

 public boolean atEnd() { return current == BiList.this.head; }
} // BiIterator

COMP 211, Spring 2010 4

Inner Classes
•  An Inner class is a class defined inside of another class.

•  Why would anyone want to do that?
•  An Inner class object can access the

implementation of the object that created it –
including private fields

•  Inner classes can be hidden from other classes in
the same package

•  Anonymous inner classes are frequently used for
creating event callbacks, and for task
decomposition in parallel programming

5 COMP 211, Spring 2010

How to declare a named inner class
•  You declare a named inner class like any other member

 class ICExample {
 private class thisIsAnInnerClass { //THIS IS THE INNER CLAS

 // define a class here
 }
 }

6 COMP 211, Spring 2010

Referring to members of Outer
Classes

•  With inner classes, you can refer to members of an outer class
using the outer class’ name (if necessary for disambiguation)

 public void actionPerformed(ActionEvent e) {
 // inside the inner class

 double interest = <OuterClassName>.balance * this.interestRate;
 <OuterClassName>.balance += interest;
 }

•  The balance field is a private member of the outer class.

7 COMP 211, Spring 2010

Local Inner classes
•  You can declare an inner class inside of a method, just like

you could declare a local variable.
•  A local inner class can refer to final members of the

enclosing class, and to final local variables in the
enclosing method

•  When using a local inner class, if you only want to make
one instance of it, you don’t even need to give it a name

•  This is known as an anonymous inner class

•  These are convenient for event programming and parallel
programming

•  However, the syntax is extremely cryptic …
8 COMP 211, Spring 2010

Anonymous Inner classes
public void start(final double rate)
{

 ActionListener adder = new
 ActionListener()
 {
 public void actionPerformed(ActionEvent evt)
 {
 double interest = balance * rate / 100;
 balance += interest;
 }
 };
 Timer t = new Timer(1000, adder);
 t.start();

 . . .
}

•  This is saying, construct a new object of a class that
implements the ActionListener interface, where the one
required method (actionPerformed) is defined inside the
brackets.

9 COMP 211, Spring 2010

Anonymous Inner classes
•  You have to look very carefully to see a

difference between construction of a
new object, and construction of a new
inner class extending a class.

 //A person object
 Person queen=new Person(“Mary”); //Person Object
 //An object of an inner class extending Person
 Person count = new Person(“Frankenstein”) { //class code here};

10 COMP 211, Spring 2010

11

 Anonymous Classes
•  For each function that we want to use as a value, we must

define a class, preferably a singleton. Since the class has no
fields, all instances are effectively identical.

•  Java provides a lightweight notation for singleton classes called
anonymous classes. Moreover these classes can refer to fields
and final method variables that are in scope.

•  Anonymous class notation:

new <type>() {  
 <member1>  
 ...  
 <membern>  
}	

COMP 211, Spring 2010

12

Anonymous Class Example
. . .	
final Integer negativeOne = new Integer(-1);	
ObjectList ol1 = . . .;	
ObjectList ol2 = ol1.map(
 new UnaryFun() { // Anonymous inner class  
 Object apply(Object arg) { 	
 if (arg.predicate())  
 return EmptyObjectList.ONLY.cons(arg);	
 else	
 return negativeOne; // Free variable  
 }  
 }	
);  

COMP 211, Spring 2010

13

Free Variables in Anonymous
Classes

•  What do free variables mean inside anonymous
classes? What do they mean in λ-expressions?

•  In Java, the free variables can be either:
•  fields, or
•  local (method) variables.

COMP 211, Spring 2010

Java’s Callable Interface
•  Introduced in J2SE 5.0 in java.util.concurrent package

(remember to “import java.util.concurrent;”)

public interface Callable<V> {

 /**

 * Computes a result, or throws an exception.

 *

 * @return computed result

 * @throws Exception if unable to compute a result

 */

 V call() throws Exception;

}
COMP 211, Spring 2010 14

Task Decomposition using
Callable

// HTML renderer before decomposition

 ImageData image1 = imageInfo.downloadImage(1);

 ImageData image2 = imageInfo.downloadImage(2);

 . . .

 renderImage(image1);

 renderImage(image2);

// HTML renderer after task decomposition

 Callable<ImageData> task1 = new Callable<ImageData>() {

 public ImageData call() {return imageInfo.downloadImage(1);}};

 Callable<ImageData> task2 = new Callable<ImageData>() {

 public ImageData call() {return imageInfo.downloadImage(2);}};

 . . .

 renderImage(task1.call());

 renderImage(task2.call());

COMP 211, Spring 2010 15

Food for thought
•  What have we achieved by replacing

“renderImage(image1);” by
“renderImage(task1.call());” ?

•  When is it legal to perform this kind of
substitution in a program? When is it
not?

COMP 211, Spring 2010 16

