
 1

 Mutable Trees

Corky Cartwright

Stephen Wong

Department of Computer Science

Rice University

COMP 211, Spring 2011

2

 Background

• Functional binary trees
• Scheme: ancestor trees, binary trees, binary search trees, ...
• Java equivalents: obvious image of Scheme notion using the composite pattern
to represent binary trees. Perhaps we should have assigned some exercises. No

surprises.

• Other functional trees
• Scheme: descendant trees with arbitrary number of children, abstract syntax

trees (ASTs) where the children signature depends on the node type, …
• Java equivalents: … notably ASTs for boolean formulas

• Focus on binary trees rather than more general forms of trees (with
varying number of children at internal nodes) because they have
regular type signatures and they are ubiquitous. Binary are used far
more often than any other specific form of tree.

COMP 211, Spring 2011

3

 Tree Processing is Traversal

• Tree-walking: in processing trees we visit the nodes in
some order. There are three established orders that are
named based on when the root of a tree is visited.

• Pre-order: the root is visited before the children
• Post-order: the root is visited after the children
• In-order (applicable only to binary trees) : the root is visited after the

left tree but before the right tree.
• tree-map from Exam 1 performed a post-order traversal.

• Conventional tree-walking is relatively uncommon in code
written in an OO style because it fixes the calling structure
(like tree-map). Visitors, which let each specific visitor
specify the traversal (recursive calling) strategy.

COMP 211, Spring 2011

4

 Binary (Search) Trees

• In Java, functional binary (search) trees are internally
represented using objects (nodes) equipped with key, value,
left and right fields (in some cases additional data fields)
and degenerate leaves that are typically null. (Other
degenerate leaf values such as an explicit EMPTY object are
possible, but null (regrettably) is dominant. Recall that null is
not an OO data representation.

• Mutable trees have exactly the same fields in internal (non-leaf)
nodes except that they are mutable.

• In building a mutable binary (search) tree, new nodes can be
added simply by replacing a degenerate leaf by an internal tree
node. The asymptotic cost does not change (assuming you are
starting at the root) but the constant factor is reduced.

• Example: TreeMap in DrJava

COMP 211, Spring 2011

5

 Coding Mutable Tree Data Types
• General Observation: treating boundary conditions (null references)

correctly is critical; they are a frequent source of errors.
• In an OO language, all ugliness should be encapsulated inside the class

representing a data structure. The internal representation of a type (e.g.,
the Node class for a binary tree) should not be visible to clients of the
data type.

• Deleting nodes from a binary search tree, no matter what the
formulation, is rather ugly, particularly if we are seeking a minimum cost
solution. See Cormen, Leiserson, Rivest (referenced in the course wiki)
for code snippets (that are often inscrutable) along these lines.

• Trees naturally represent both ordered sets and maps on an ordered set
of keys. But these two abstract data structures have incompatible
interfaces. Hence, a collections library needs both a TreeSet and a
TreeMap.

COMP 211, Spring 2011

6

 Deleting Nodes from a Binary Search Tree

• This operation is messy in all formulations of binary search
trees, particularly if some notion of optimal code is sought.

• There is an intelligible strategy with good performance that
relies on a cute trick. Deleting the minimum element of a tree is
straightforward because the node containing the minimum
element has no left subtree. Deletion of a node with a non-
empty right subtree (the empty right subtree case is easy) can
be reduced to finding the minimum node in the right subtree,
hoisting its data into the node being "deleted", and deleting the
hoisted node. Easy in OO approach. We will examine this
code in OOTreeMap in DrJava shortly.

COMP 211, Spring 2011

7

 Mutable Binary Search Trees
• Go to Drjava code and study TreeMap.java, which is a

traditional procedural solution encapsulated in OO classes.
The code is inherently messy with many cases and
complex control.

• Can we produce a more intelligible solution using OO
ideas?

COMP 211, Spring 2011

8

 Controversial Issue in OO Design

• How much should we compromise good object-oriented
style to achieve high performance or to incorporate
conventional procedural data structure implementations?

• Fact: most Java code, even Java libraries, is not written in
a sophisticated OO style. Why? OO Design is only
understood by a (growing) minority of software developers.

COMP 211, Spring 2011

9

 OO Mutable Binary Trees

• Code for conventional procedural solution has been repeatedly
polished but it is still astonishingly convoluted (albeit efficient).

• A standard procedural solution can be hidden inside an OO class,
e.g. the TreeMap class posted with this lecture. Please read it. It
is reasonably clean in comparison to most procedural solutions
but it is ugly because it relies on complex looping and conditional
control and raw mutable references that make mutation difficult.

• In contrast, the lean OO solution (derived from a more overt OO
solution developed by Nguyen and Wong) is much lighter weight
and easier to understand although there are occasionally subtle
distinctions between a cell (RefNode) containing a Node and a
Node. Fortunately, static type-checking catches nearly all bugs
where code might confuse the two.

COMP 211, Spring 2011

10

 Why Is the OO Code Simpler?

• The OO code uses a lightweight version of the state pattern. The left and
right subtrees in tree nodes are not other tree nodes. Instead they are
state objects that can be either empty on non-empty. Null references
cannot be cleanly used instead of empty state objects because they are
not objects. (Note: in languages where fields can be passed by reference
like C++, the field containing a null value can be treated as an object.)

• Since the left and right fields of a node are always mutable objects, they
can be modified as needed. As a result, OO code never has to focus on
the parents of nodes to be deleted or inserted. The deletion or insertion
can be performed directly on the non-empty node to be deleted or the
empty node to be replaced.

• Please compare the code in TreeMap.java (a procedural solution
encapsulated as a class) and OOTreeMap.java which is the lightest
weight OO solution that we know how to construct.

• Let's look at the code in OOTreeMap.java

COMP 211, Spring 2011

11

 Why Is Well-Written Procedural Code Faster?

• The OO code uses an extra level of indirection to eliminate
the need for ugly special cases. A state object is a container
that can hold different variants in a union or composite
pattern. (Think of state as a mutable field bound to the
possible variants of a union or composite type.)

• In this case, we have a simple composite that is either empty
or non-empty (much like functional Lists) where the non-
empty object contains a key value and two state objects
representing left and right subtrees. To minimize the cost of
the state pattern, we represent the the empty state by a null
reference rather than a pointer to an EMPTY object.

COMP 211, Spring 2011

12

 Binary Search Tree Implementations Compared

• Go to the respective code bases using DrJava.

COMP 211, Spring 2011

13

For Next Class
• Laundry homework due on Wednesday. Assignment

specs are much longer than the code you must write.
Straightforward but not conducive to last-minute solution.
Play with it. Have fun. There is nothing conceptually hard
about the data or algorithms in this assignment. It is an
exercise to help you learn about programming with
mutable data structures in Java.

• The supporting code base is formulated as a DrJava
project with named packages.

• DrJava makes it easy to practice writing code
fragments/exercises. Do it! Don't be afraid to experiment.
The interactions pane makes it easy.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

