
 1

 Graphical User Interfaces

Corky Cartwright

Stephen Wong

Department of Computer Science

Rice University

 COMP 211, Spring 2011

2

 Human Computer Interaction

• Original computer interfaces
• Sequences of numbers/characters:

 punch cards
 paper tape
 console switches and lights
 line printers
 magnetic tape
 typewriter terminals (teletypes)

• Original interactive interfaces were based on streams of characters
• Well suited to some applications because it accommodates the

input of arbitrary program text
 Unix shell (bash)
 Windows command line

 COMP 211, Spring 2011

3

 Graphical interaction

• Labeled buttons
• Text boxes for character input
• Mouse actions for selection, cutting, pasting,

tracking/drawing
• What is the programmatic interface for

graphical interaction (i.e., what does the
program receiving graphical input see)?

 A sequence of events

• What are events?

 COMP 211, Spring 2011

4

 What are Events?

• In an OO language, they are objects describing graphical
inputs. Generated by low-level code in the VM supporting
the OO language. The low-level code processes hardware
interrupts. Intuition: messages.

• A GUI (graphical user interface) library defines and supports
the event system.

• The nitty gritty systems level code supporting the event
library is based on interrupt-handling in the operating system
(Comp 221, Comp 421)

• From the perspective of high-level language programming,
events are are simply the elements of a much richer input
stream than ASCII characters.

• Very close connection between text processing and event
processing

 COMP 211, Spring 2011

5

 Text processing template

• while (! input.endOfFile) {
 read(input);
 process(input);
}

• Sometimes end-of-file is handled as an exception:
try {
 while (true) {
 read(input);
 process(input);
 }
}
catch(EOFException e) { ... }

• If a Java program tries to read past end-of-file, the read operation throws a
java.io.??.

 COMP 211, Spring 2011

6

 Event processing template
• while (true) {
 get next event;
 process event;
}

• Processing an event may terminate application. The event may
be “close this application”; code simply performs any necessary
clean-up and breaks.

• In Java, the GUI library includes a separate thread that
processes events using a loop as shown above.
The GUI library presumes that all event processing is done in the
event-handling loop. In fact, it assumes that all method calls on
GUI components (unless the method contract states otherwise)
are called from the event-processing thread.

 COMP 211, Spring 2011

7

 Key Intuitions

• A program driven by a GUI simply processes a stream
of events.

• Key question: what about pre-emption? In an internet
browser, you can do other things while a page is being
loaded. How can an event be processed without
holding subsequent event processing pending?

• Answer: spawn an independent thread to process the
event if it cannot be done quickly.

• HUGE problem: concurrent (multi-threaded)
programming is HARD and full of hidden gotcha’s.

 COMP 211, Spring 2011

8

 Simple GUI Applications

• No pre-emption/concurrency. Embedded application (often called he
model) is unaware of the GUI.

• How is such an application organized? The “pure” model-view-
controller (MVC) pattern.

• Pure MVC:
• On startup, the controller (which should be an object) runs. (How

can we avoid making the controller an object in Java? Use “static”
code, typically the main() method.)

• The controller creates the model (which should be structured as
an object) and the GUI (called the “view”) which is also organized
as an object (e.g. a JFrame)

• The controller links the view to the model by attaching listeners
(commands) to GUI elements (buttons, etc) that are run when that
GUI element is activated. The listener code performs some action
on the model. The model is passive; it does not talk to the GUI.

• The controller activates the GUI and immediately terminates.

 COMP 211, Spring 2011

9

 Motivation for MVC

• We partition GUI applications using the MVC (model-
view-controller) pattern so that new views can
potentially be created without changing the logic
(model) of the underlying application.

• This is a specific example of the general design
concept called de-coupling: partition an application into
independent components that interact only through
explicitly declared interfaces. Unfortunately, it is easy
to violate this discipline in Java and other languages.
In Java, a file can import (or directly access using fully
qualified path names) any public class that it wants.

 COMP 211, Spring 2011

10

 Simple GUI Threading

• How do GUI events get recognized and processed?
• A GUI system requires a dedicated thread that performs the event

loop we showed earlier:
 while (true) {
 get next event;
 process event;
 }

• How do we avoid perils of multi-threading? The event thread is
started by the GUI library when the GUI is activated (typically by
making a GUI component visible). Prior to that time, no event
handling thread exists.

• In the pure MVC model, the controller dies immediately after
activating the GUI so there is never more than one thread
executing in the program!

 COMP 211, Spring 2011

11

Example: a click counter
• Explicated in the OO Design Notes

 COMP 211, Spring 2011

12

 More Complex GUIs

● In some cases the model must be aware of the GUI and explicitly call
methods in it, e.g., DrJava or a game playing program.
● The model includes a reference to the GUI specified by an interface with

limited GUI functionality. The model implements this interface. The
controller passes a reference to the GUI when it sets up the model.

● The limited GUI interface should be developed as part of the model and
include only what the model needs.

● Sophisticated “view” components may spawn asynchronous threads to
process an event that would otherwise lock-up the GUI. This coding practice
(explicit concurrency) is treacherous because special protocols must be used
in to access shared data and the methods invokeLater and
invokeAndWait must be used to move code fragments (expressed using
the Runnable interface) to the event-handling thread in the GUI.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

