
Comp 211, Spring 2011

1

 Data-directed Design

Corky Cartwright
Stephen Wong
Rice University

Comp 211, Spring 2011

2

Sample Development of Sorting
Recall our definition of lists of numbers in Lecture 3:
; A list-of-number is either
; empty, or
; (cons n lon)
; where n is a number and lon is a list-of-number.
and the corresponding template:
#| (define (f-lon ... alon ...)
 (cond [(empty? alon) ...]
 [(cons? alon) ... (first alon) ...
 (f-lon ... (rest alon) ...) ...])) |#
Our task is to define a function
; Type contract
; sort: list-of-number - > list-of-number
; Purpose: (sort lon) returns a list containing the
; elements of lon in ascending (non-descending) order
; Examples:
(check-expect (sort empty) empty)
(check-expect (sort '(1)) '(1))
(check-expect (sort '(4 2)) '(2 4))
(check-expect (sort '(4 10 2 -5 4)) '(-5 2 4 4 10))

Comp 211, Spring 2011

3

Sorting cont.
Before coding, we must develop our template instantiation::
; Template instantiation
#| (define (sort alon)
 (cond [(empty? alon) ...]
 [(cons? Alon) .. . (first alon) .. .
 (sort (rest alon)) ...])) |#

To write the code, we must fill in the ellipsis.
(define (sort alon)
 (cond [(empty? alon) empty]
 [(cons? alon) (insert (first alon) (sort (rest alon)))]))

What does (insert n alon) do? It inserts the element n in sorted position in
alon assuming that alon is already sorted. We need to develop the function
insert using our design recipe. We have already defined the list-of-number data
type and provided a template for processing it.

Comp 211, Spring 2011

4

Sorting cont.
Our task is to define a function
; Type contract
; insert: number list-of-number - > list-of-number
; Purpose: (insert n lon) returns a list containing n
; and the elements of lon in sorted (ascending) order,
; assuming that lon is already sorted.
; Examples:
(check-expect (insert 0 empty) '(0))
(check-expect (insert 0 '(1)) '(0 1))
(check-expect (insert 1 '(0)) '(0 1))
(check-expect (insert 5 '(-2 4 6)) '(-2 4 5 6))
; Template instantiation
#| (define (insert n alon)
 (cond [(empty? alon) ...]
 [(cons? alon) .. . (first alon) .. .
 (insert n (rest alon)) ...])) |#

Comp 211, Spring 2011

5

Sorting cont.
All that remains is to write code for insert and test both insert and sort
which happens automatically when we “Run” our program in DrRacket.
; Code
(define (insert n alon)
 (cond [(empty? alon) (list n)] ; (list n) abbreviates (cons n empty)
 [(cons? alon)
 (if (<= n (first alon)) (cons n alon)
 (cons (first alon) (insert n (rest alon))))]))

Comp 211, Spring 2011

6

Parameterized Data Definitions

In our definition of lists from Lecture 3 and Lab 2, we stipulated
that the list elements were numbers. But we can use an
unspecified type alpha for the element type and the definition
looks essentially the same:
; A list-of-alpha is either
; empty, or
; (cons a loa)
; where a is an alpha and loa is a list-of-alpha

In subsequent type contracts and template instantiations we can
instantiate alpha as any type, such as list-of-symbol, list-
of-string, or list-of-number.

Comp 211, Spring 2011

7

Parameterized List Template

The template for the preceding data definition is:
;; (define (f ... a-list ...)

;; (cond

;; [(empty? a-list) ...]

;; [else ... (first a-list) ...

;; ... (f ... (rest a-list) ...) ...]))

which is identical to the template for list-of-number. The form of the
template does not depend on element type. It applies to list-of-alpha
where alpha is any type. In fact, some functions

like length (in HW01 under a different name and restricted

to symbols), reverse, append, first, rest work for all

types list-of-alpha. Henceforth, we will allow type variables

like alpha in data definitions.

Comp 211, Spring 2011

8

Plan for this lecture
• List abbreviations
• Practice with the list template

• Choosing the argument to process
• Recognizing when help (auxiliary)

functions are required/advisable.
• Data-directed design with numbers

Comp 211, Spring 2011

9

List Abbreviations
Let e1, e2, …, en be Scheme expressions. Then
 (list e1 e2 ... en) abbreviates
 (cons e1 (cons e2 ... (cons en empty))...)
Let s1, s2, …, sn be symbols , numbers, or unquoted lists
(constructed in the same way).
 '(s1 ... sn) abbreviates (list 's1 ... 'sn)

Examples (all equal):
'((1 2) (3 four))
(list (list 1 2) (list 3 'four))
(cons (cons 1 (cons 2 empty))
 (cons (cons 3 (cons 'four empty))) empty)

Do not nest quotation! It does not work!

Do not use true, false, empty inside quotation. When in
doubt, use (list …) in preference to quotation.

Comp 211, Spring 2011

10

A simple list function of two list arguments

The append function that concatenates lists is built-in to Scheme.
; Type contract:
; app: list-of-alpha list-of-alpha -> list-of-alpha
; Purpose: (app a b) concatenates the lists a and b.

; Examples
(check-expect (app '(a) '(b c)) '(a b c))
(check-expect (app empty '(c d)) '(c d))
(check-expect (app '(a b) empty) '(a b))
(check-expect (app '(a b) '(c d)) '(a b c d))

; Template Instantiation:
|# (define (app x y)
 (cond [(empty? x) ...]
 [(cons? x) ... (first x) ...
 (app (rest x) y) ...]))
#|

Comp 211, Spring 2011

11

append cont.

• ; Code:
(define (app x y)
 (cond [(empty? x) y]
 [(cons? x)
 (cons (first x) (app (rest x) y)]))

• Would recurring on the second argument work?

Comp 211, Spring 2011

12

Using append as an auxiliary function

• append is included in the Scheme library
• concatenation is the common string (a form of list of

char) “construction” operation
• Problem: cost of operation is not constant; it is

proportional to size of first argument (or, in case of
strings, size of constructed list)

• Example of function that uses append to construct
its result: flatten

Comp 211, Spring 2011

13

Defining flatten
;; Type contract
;; flatten: list-of-list-of-alpha -> list-of-alpha
;; Purpose: concatenates all of the lists of elements in the
;; input to form a list of elements
;; Tests WARNING: empty, true, false do NOT work inside '
(check-expect (flatten '((a b) (c d) (e f)) '(a b c d e f))
(check-expect (flatten empty) empty)
(check-expect (flatten '((a b) () (c d)) '(a b c d))
(check-expect (flatten '(() (a b) (c d) ()) '(a b c d))

Recall that:
;; A list-of-alpha is either:
;; empty, or
;; (cons a aloa) where a is an alpha and aloa is a list-of-alpha
;; Template:
;; (define (f ... aloa ...)
;; (cond [(empty? aloa) ...]
;; [(cons? aloa) ... (first aloa)
;; ... (f ... (rest aloa) ...) ...]))

Comp 211, Spring 2011

14

Defining flatten
;; Template Instantiation:
#|
 (define (flatten aloloa)
 (cond [(empty? aloloa) ...]
 [(cons? aloloa) ... (first aloloa)
 ... (flatten (rest aloloa)) ...]))
|#
;; Code:
(define (flatten aloloa)
 (cond [(empty? aloloa) empty]
 [(cons? aloloa)
 (append (first aloloa)
 (flatten (rest aloloa)))]))

This is not the standard operation that is defined in some Lisp/Scheme libraries; it
has a more resrictive input type.

Comp 211, Spring 2011

15

Examples of Algebraic Data
• Files on your computer

• Simple File, or
• Folder, which contains a list of Files

• XML
• General format for representing algebraic data as

ASCII text

• Internet domain names
• Natural numbers
• Arithmetic expressions
• Syntax trees

Comp 211, Spring 2011

16

Natural Numbers: Data definition
• Standard definition from mathematics

;; A natural-number (N for short) is either
;; 0, or
;; (add1 n)
;; where n is a natural-number

• Comments:
• In mathematics, add1 is usually called succ or S, for successor.
• Principle of mathematical induction for the natural numbers is based on

this definition (using S for successor):

 P(0), ∀x [P(x) -> P(S(x))]

 ∀x P(x)

• Is there an analogous induction principle for other forms of
inductively defined data? Yes!

Comp 211, Spring 2011

17

Examples and Basic Operations
• Examples (using constructors)

• Zero: 0
• One: (add1 0)
• Four: (add1 (add1 (add1 (add1 0))))

• Accessors:
• sub1 : N -> N

Note: sub1 is typically called pred or P in mathematics; using
sub1 instead is a bit of a cheat because (sub1 0) behaves
incorrectly.

• Recognizers:
• zero? : Any -> bool
• positive?: Any -> bool ;; not add1?

Comp 211, Spring 2011

18

Basic Laws (Reductions) for Natural
Numbers

• Recall the ones for lists:
• For all elements v, and lists l, we have

• (empty? empty) = true ;; recognizer
• (empty? (cons v l)) = false
• (rest (cons v l)) = l ;; accessor
• (first (cons v l)) = v

• Basic laws:
• For all natural numbers n, we have

• (zero? 0) = true ;; recognizer
• (zero? (add1 n)) = false
• (positive? (add1 n)) = true
• (positive? 0) = false
• (sub1 (add1 n)) = n ;; accessor

• Similar rules exist for all inductively-defined data types
• What about laws for (equal? ...)

Comp 211, Spring 2011

19

Natural Numbers: Template

Template is very similar to lists:
;; f : natural-number -> …

;; (define (f ... n ...)

;; (cond [(zero? n) ...]

;; [(positive? n)

;; ... (f ... (sub1 n) ...) ...]))

Comp 211, Spring 2011

20

Example
• Write a function repeat that given a symbol s and number n constructs a list containing n copies

of s.
; Type contract

 ; repeat : symbol natural-number -> list-of-symbol
 ; Purpose: (repeat s n) returns a list containing n copies of s

 ; Examples
 (check-expect (repeat 'Rabbit 0) empty)
 (check-expect (repeat 'Goose 1) '(Goose))
 (check-expect (repeat 'Rabbit 2) '(Rabbit Rabbit))

 ; Template instantiation:

 ; f : natural-number -> …

 ; (define (repeat s n)

 ; (cond [(zero? n) ...]

 ; [(positive? n) ... (repeat s (sub1 n)) …]))
 ; Code

(define (repeat s n)
 (cond [(zero? n) empty]
 [(positive? n) (cons s (repeat s (sub1 n)))]))

Comp 211, Spring 2011

21

More Examples

• add: N N -> N
• multiply: N N -> N
• factorial: N -> N

• Defining and using familiar functions on
natural numbers helps us understand
structural recursion (our design template for
 recursive mixed data definitions)

Comp 211, Spring 2011

22

Add

; Template Instantiation

(define (add m n)

 (cond [(zero? m) ...]

 [(positive? m) ... (add (sub1 m) n) ...)]))

; Code

(define (add m n)

 (cond [(zero? m) n]

 [(positive? m) (add1 (add (sub1 m) n))]))

; Template Instantiation

(define (right-add m n)

 (cond [(zero? n) .. .]

 [(positive? n) .. . (right-add m (sub1 n)) .. .)]))

; Code

(define (right-add m n)

 (cond [(zero? n) m]

 [(positive? n) (add1 (right-add m (sub1 n)))]))

Comp 211, Spring 2011

23

Defining Integers
An integer is either:
• 0; or
• (add1 n) where n has the form 0 or (add1 …) [non-negative]; or
• (sub1 n) where n has the form 0 or (sub1 …) [non-positive].

Recognizers:
• zero?: any -> bool
• positive?: any -> bool
• negative?: any -> bool

In Scheme, add1 and sub1 have been extended to all integers by
defining for all integers n :

• (add1 (sub1 n)) = n
• (sub1 (add1 n)) = n

Comp 211, Spring 2011

24

 For Next Class

• Homework due 10am, Friday. Submit it
via OwlSpace.

• Reading: Chs. 11-13

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

