Data-directed Design

Corky Cartwright Stephen Wong Rice University

Sample Development of Sorting

Recall our definition of lists of numbers in Lecture 3

```
; A list-of-number is either
; empty, or
; (cons n lond
; where }n\mathrm{ is a number and lon is a list-of-number.
and the corresponding template:
#| (define (f-lon ... alon ...)
    (cond [(empty? alon) ... ]
    [(cons? alon) ... (first alon) ... )
    (f-lon ... (rest alon) ...) ... ])) |#
```

Our task is to define a function
; Type contract
; sort: list-of-number - > list-of-number
; Purpose: (sort lon) returns a list containing the
; elements of lon in ascending (non-descending) order
; Examples:
(check-expect (sort empty) empty)
(check-expect (sort '(1)) '(1))
(check-expect (sort '(4 2)) '(2 4))
(check-expect (sort '(4 10 2 -5 4)) '($\left.\begin{array}{llllll}-5 & 2 & 4 & 10\end{array}\right)$

Sorting cont.

Before coding, we must develop our temptate instantiation::
; Template instantiation
\#| (define (sort alon)
(cond [(empty? alon) . ..]
[(cons? Alon) .. . (first alon) . . .
(sort (rest alon)) ...])) |\#
To write the code, we must fill in the ellipsis.
(define (sort alon)
(cond [(empty? alon) empty]
[(cons? alon) (insert (first alon) (sort (rest alon)))]))

What does (insert n alon) do? It inserts the element n in sorted position in alon assuming that alon is already sorted. We need to develop the function insert using our design recipe. We have already defined the list-of-number data type and provided a template for processing it.

Sorting cont.

Our task is to define a function
; Type contract
; insert: number list-of-number - > list-of-number
; Purpose: (insert n lon) returns a list containing n
; and the elements of lon in sorted (ascending) order,
; assuming that lon is already sorted.
; Examples:
(check-expect (insert 0 empty) '(0))
(check-expect (insert 0 '(1)) '(0 1))
(check-expect (insert 1 '(0)) '(0 1))
(check-expect (insert 5 '(-2 4 6) $)\left(\begin{array}{llll}-2 & 4 & 5 & 6\end{array}\right)$)
; Template instantiation
\#| (define (insert n alon)
(cond [(empty? alon) . ..]
[(cons? alon) .. . (first alon)
(insert n (rest alon)) ...])) |\#

Sorting cont.

All that remains is to write code for insert and testh insert and sort which happens automaticatly when we "Run" our program in DrRacket.
; Code
(define (insert n alon)

```
    (cond [(empty? alon) (list n)] ; (list n) abpreviates (cons n empty)
```

[(cons? alon)
(if (<= n (first alon)) (cons n alon)
(cons (first alon) (insert n (rest alon))))]))

Parameterized Data Definitions

In our definition of lists from Lecture 3 and Lab 2, we stipulated that the list elements were numbers. But we can use an unspecified type alpha for the element type and the definition looks essentially the same:
; A list-of-alpha is either
; empty, or
; (cons a loa)
; where a is an alpha and loa is a list-of-alpha
In subsequent type contracts and template instantiations we can instantiate alpha as any type, such as list-of-symbol, list-of-string, or list-of-number.

Parameterized List Template

The template for the preceding data definition is:

```
;; (define (f ... a-list ...)
;; (cond
;; [(empty? a-list) ...]
;; [else ... (first a-list) ...
;; ... (f ... (rest a-list) ...) ...]))
```

which is identical to the template for list-of-number. The form of the template does not depend on element type. It applies to list-of-alpha where alpha is any type. In fact, some functions
like length (in HW01 under a different name and restricted to symbols), reverse, append, first, rest work for all types list-of-alpha. Henceforth, we will allow type variables like alpha in data definitions.

Plan for this lecture

- List abbreviations
- Practice with the list template
- Choosing the argument to process
- Recognizing when help (auxiliary) functions are required/advisable.
- Data-directed design with numbers

List Abbreviations

Let e1, e2, ... en be Scheme expressions. Then (list e1 e2 ... en) abbreviates
(cons e1 (cons e2 ... (cons en empty))...)
Let $s 1, s 2, \ldots$, $s n$ be symbols, numbers, or unquoted lists (constructed in the same way).
'(s1 ... sn) abbreviates (list 's1 ... 'sn)
Examples (all equal):
'((1 2) (3 four))
(list (list 1 2) (list 3 'four))
(cons (cons 1 (cons 2 empty))
(cons (cons 3 (cons 'four empty))) empty)
Do not nest quotation! It does not work!
Do not use true, false, empty inside quotation. When in doubt, use (list ...) in preference to quotation.

A simple list function of two list arguments

The append function that concatenates lists is built-in to Scheme.
; Type contract:
; app: list-of-alpha list-of-alpha -> list-of-alpha
; Purpose: (app ab) concatenates the lists a and b.
; Examples
(check-expect (app '(a) ' (b c)) '(a b c))
(check-expect (app empty '(c d)) '(c d))
(check-expect (app '(a b) empty) '(a b))
(check-expect (app '(a b) ' (c d)) '(a b c d))
; Template Instantiation:
|\# (define (app x y)
(cond [(empty? x) ...]
[(cons? x) ... (first x) ... (app (rest x) y) ...]))
\# I

append cont.

; Code:
(define (app x y)
(cond [(empty? x) y]
[(cons? x)
(cons (first x) (app (rest x) y)]))

- Would recurring on the second argument work?

Using append as an auxiliary function

- append is included in the Scheme library
- concatenation is the common string (a form of list of char) "construction" operation
- Problem: cost of operation is not constant; it is proportional to size of first argument (or, in case of strings, size of constructed list)
- Example of function that uses append to construct its result: flatten

Defining flatten

;; Type contract
; ; flatten: list-of-list-of-alpha -> list-of-alpha
; ; Purpose: concatenates all of the lists of elements in the
; ; input to form a list of elements
; ; Tests WARNING: empty, true, false do NOT work inside '
(check-expect (flatten '((a b) (c d) (ef)) '(a b c deff)
(check-expect (flatten empty) empty)
(check-expect (flatten '((a b) () (c d)) '(a b c d))
(check-expect (flatten '(() (a b) (c d) ()) ' (a b c d))

Recall that:

; ; A list-of-alpha is either:
; ; empty, or
; (cons a aloa) where a is an alpha and aloa is a list-of-alpha
; ; Template:
; ; (define (f ... aloa ...)
; ; (cond [(empty? aloa) ...]
[(cons? aloa) ... (first aloa)
;; ... (f ... (rest aloa) ...) ...]))
Comp 211, Spring 2011

Defining flatten

; ; Template Instantiation:
\# |
(define (flatten aloloa)
(cond [(empty? aloloa) ...]
[(cons? aloloa) ... (first aloloa)
... (flatten (rest aloloa)) ...]))
|\#
; ; Code:
(define (flatten aloloa)
(cond [(empty? aloloa) empty]
[(cons? aloloa) (append (first aloloa) (flatten (rest aloloa)))])

This is not the standard operation that is defined in some Lisp/Scheme libraries; it has a more resrictive input type.

Examples of Algebraic Data

- Files on your computer
- Simple File, or
- Folder, which contains a list of Files
- XML
- General format for representing algebraic data as ASCII text
- Internet domain names
- Natural numbers
- Arithmetic expressions
- Syntax trees

Natural Numbers: Data definition

Standard definition from mathematics
; ; A natural-number (N for short) is either
; ; 0, or
; ; (add1 n)
;; where n is a natural-number

- Comments:
- In mathematics, add1 is usually called succ or S, for successor.
- Principle of mathematical induction for the natural numbers is based on this definition (using \mathbf{S} for successor):

$$
P(0), \forall x[P(x)->P(S(x))]
$$

$\forall x P(x)$

- Is there an analogous induction principle for other forms of inductively defined data? Yes!

Examples and Basic Operations

- Examples (using constructors)
- Zero: 0
- One: (add1 0)
- Four: (add1 (add1 (add1 (add1 0))))
- Accessors:
- sub1 : N $->\mathrm{N}$

Note: sub1 is typically called pred or P in mathematics; using sub1 instead is a bit of a cheat because (sub1 0) behaves incorrectly.

- Recognizers:
- zero? : Any -> bool
positive?: Any -> bool ; ; not add1?

Basic Laws (Reductions) for Natural Numbers

- Recall the ones for lists:
- For all elements v, and lists 1 , we have
- (empty? empty) = true ;; recognizer
- (empty? (cons v l)) = false
- (rest (cons v l)) = 1 ;; accessor
- (first (cons v l)) $=v$
- Basic laws:
- For all natural numbers n, we have
- (zero? 0) = true ; recognizer
- (zero? (add1 n)) = false
- (positive? (add1 n)) = true
- (positive? 0) = false
- (sub1 (add1 n)) $=n \quad ;$ accessor
- Similar rules exist for all inductively-defined data types
- What about laws for (equal? ...)

Natural Numbers: Template

Template is very similar to lists:
;; \mathbf{f} : natural_number -> ...
; ; (define ($\mathrm{f} \ldots \mathrm{n}$....)
; ; (cond [(zero? n) ...]
; ;
; ;
... (f ... (sub1 n) ...) ...]))

Example

Write a function repeat that given a symbol s and number n constructs a list containing n copies of s.
; Type contract
; repeat : symbol natural-number -> list-of-symbol
; Purpose: (repeat $s \mathrm{n}$) returns a list containing n copies of s
; Examples
(check-expect (repeat 'Rabbit 0) empty)
(check-expect (repeat 'Goose 1) '(Goose))
(check-expect (repeat 'Rabbit 2) '(Rabbit Rabbit))
; Template instantiation:
; f : natural-number -> ...
; (define (repeat s n)
; (cond [(zero? n) ...]
; [(positive? n) ... (repeat s (sub1 n)) ...]))
; Code
(define (repeat s n) (cond [(zero? n) empty]
[(positive? n) (cons s (repeat s (sub1 n)))]))
Comp 211, Spring 2011

More Examples

- add: $N \mathbf{N}->\mathbf{N}$
- multiply: N N -> N
- factorial: N -> N
- Defining and using familiar functions on natural numbers helps us understand structural recursion (our design template for recursive mixed data definitions)

Add

; Template Instantiation
(define (add m n)
(cond [(zero? m) ...]
[(positive? m) ... (add (sub1 m) n) ...)]))
; Code
(define (add m n)
(cond [(zero? m) n] [(positive? m) (add1 (add (sub1 m) n))]))
; Template Instantiation
(define (right-add m n)
(cond [(zero? n) .. .]
[(positive? n) .. . (right-add m (sub1 n)) .. .)]))
; Code
(define (right-add m n)
(cond [(zero? n) m]
[(positive? n) (add1 (right-add m (sub1 n)))]))

Defining Integers

An integer is either:

- 0; or
- (add1 n) where n has the form 0 or (add1 ...) [non-negative]; or
- (sub1 n) where n has the form 0 or (sub1 ...) [non-positive].

Recognizers:

- zero?: any -> bool
- positive?: any $->$ bool
- negative?: any -> bool

In Scheme, add1 and sub1 have been extended to all integers by defining for all integers n :

- (add1 $(\operatorname{sub1} n))=n$
- (sub1 (add1 n)) $=n$

For Next Class

- Homework due 10am, Friday. Submit it via OwlSpace.
- Reading: Chs. 11-13

