
1

 Trees

Corky Cartwright
Stephen Wong

Department of Computer Science
Rice University

COMP 211, Spring 2010

Recap of Previous Lecture
Data-directed design
• Start with data definition

• Specifies structure of data

• Derive function template from data definition
• Model for any function that can be performed on data
• Use generic name (e.g., f) for function

• Create template instantiation for a specific function
and primary argument

• Use specific name (e.g., sort) for function
• Define separate auxiliary functions for other arguments if

needed

• Develop code based on template instantiation

COMP 211, Spring 2010 2

COMP 211, Spring 2010 3

 Today’s Goals
• Loose Ends

• Catching mistakes and raising errors
• and & or operations

• Trees
• Significantly more expressive type
• “Lists with many tails”

• Examples:
• Family tree
• Binary search tree

COMP 211, Spring 2010 4

Using and & or
 Scheme and abbreviates a conditional and takes an arbitrary number

of arguments (our student dialects require at least 2)
(and arg1 arg2 ... argn) abbreviates
(cond [(not arg1) false]

 [(not arg2) false]
 ...
 [else argn])

• Hence,
(and true true false (zero? (/ 2 0)) …) => false
Called “short-circuit” or “non-strict” semantics for and

• What does or do? It is the dual of and.
(or arg1 arg2 ... argn) abbreviates
(cond [arg1 true]
 [arg2 true]
 ...
 [else argn])

COMP 211, Spring 2010 5

 and & or cont.
• What are the reduction rules (laws) for and?

• (and false ... argn) => false
• (and true arg2 ... argn) => (and arg2 ... argn)
• (and v) => v

• What are the reduction rules (laws) for or?
• (or true ... argn) => true
• (or false arg2 ... argn) => (or arg2 ... argn)
• (or v) => v

COMP 211, Spring 2010 6

 Error Reporting
To report an error in (a student dialect of) Scheme invoke:
 (error msg)
where msg is a string enclosed in quotation marks. In full Scheme,
error takes additional arguments. See Help Desk.
HTDP (our online book) describes an obsolete version of error.

Semantics: the entire computation is aborted and an error message
msg is printed.

Example:
(define (len aloa
 (cond
 [(empty? Aloa) 0]
 [(cons? aloa) (add1 (len (rest aloa)))]
 [else (error "len: expects argument of type <list>")]))

Error Reporting (cont.)
Questions:

• Is error reporting a good idea.
• Should error behavior be documented?

• Answers to questions are surprising subtle and lacking
in consensus. In the case above, it is probably a good
idea but it is often not done because it clutters the code
and adds overhead. Moreover, the error is caught
anyway with a slightly less informative diagnostic. On
the other hand, DrScheme libraries do perform such
checks, partly because Scheme does not perform static
type checking.

• Error checking should not be included in a contract
(purpose) unless the client code can depend on it and
use it (by "catching" the error). We will cover error
catching in Java.

COMP 211, Spring 2010 7

COMP 211, Spring 2010 8

Reductions for Errors
• First, note how errors work for functions you already

know. In any context, erroneous primitive function
applications like (/ 1 0) abort the computation and
return an error at the top level:

 (/ 1 0) => /: division by zero
 This aborting behavior is unique among our rules.
• The error construct gives program text access to this

mechanism. In any context
 (error “append: expects <list> as first argument") =>
 append: expects <list> as first argument [at top level]
• Use errors only as required by the problem or recipe.

Another Inductive Type: Trees
(Structures in Structures)

COMP 211, Spring 2010 9

• Labeled trees
• Organizational charts
• Decision trees
• Search trees
and many more!

COMP 211, Spring 2009 10

From Lists to Trees

Example of a List Data Definition
; A list-of-symbols is
; empty, or
; (cons s los)
; where s is a symbol and los is a list-of-symbols

A list has one embedded structure (rest)

COMP 211, Spring 2010 11

(Ancestor) Family Trees
Example of a Family Tree Data Definition
; A child is
; empty // Represents “unknown”
; (make-child n m f) // Two self-references
; where n is a symbol, m is a child and f is a child

(define-struct child (name mother father))

A child has two embedded structures
(mother, father) which belong to type
child. Perhaps child is misnamed.

COMP 211, Spring 2010 12

Tree Depth (in class ex.)
• Consider the following problem

• Given an ancestry tree, compute the
maximum number of generations for
which we know something about this
person.

• Contract (or “type”) is
• child -> natural

• Examples (next slide)

COMP 211, Spring 2010 13

Tree Depth Examples
(define cat (make-child 'Cat empty empty))
(define tom (make-child 'Tom cat empty))
(define jane (make-child empty tom))
(define johnny (make-child 'Johnny empty empty))
(define ray (make-child 'Ray empty johnny))
(define sue (make-child 'Sue empty ray))
(define rob (make-child 'Rob empty sue))
(define bob (make-child 'Bob jane rob))

(check-expect (max-depth cat) 1)
(check-expect (max-depth tom) 2)
(check-expect (max-depth jane) 3)
(check-expect (max-depth johnny) 1)
(check-expect (max-depth ray) 2)
(check-expect (max-depth sue) 3)
(check-expect (max-depth rob) 4)
(check-expect (max-depth bob) 5)

COMP 211, Spring 2010 14

Tree Depth Template Instantiation

 ; Template Instantiation (trivial)

 (define (max-depth c)

 (cond

 [(empty? c) ...]

 [else ...

 ... (max-depth (child-mother c)) ...

 ... (max-depth (child-father c)) ...)))

COMP 211, Spring 2010 15

Tree Depth Code
 ; Code
 (define (max-depth c)
 (cond
 [(empty? c) 0]
 [else (add1
 (max (max-depth (child-mother c))
 (max-depth (child-father c)))]))

Examples can help in writing code. Work
through simple examples by hand.

COMP 211, Spring 2010 16

Binary Trees and Binary Search Trees

; A binary tree (BT) is either
; empty, or
; (make-node n l r)
; where n is a number, l and r are BTs.
(define-struct node (num left right))

; A binary search tree (BST) is a binary tree where
; the following invariants hold:
; 1. Numbers in l are less than or equal to n
; 2. Numbers in r are greater than n

COMP 211, Spring 2010 17

Binary Search Trees

Which binary tree satisfies the
invariants of a binary search tree?

Example Family Tree
(variant of Figure 35 in textbook)

COMP 211, Spring 2010 18

‘Eva

‘Dan

m

 f

 n m f

‘Fred

n m f
‘Carl

 n m f

‘Bettina

n m f

‘Dave

 n m f

empty empty
empty empty

empty empty

• Can you think of a Scheme
program that can create a cycle
among structures?

Challenge Problem

COMP 211, Spring 2010 19

‘Tom

‘Bob

n m f

n m f

‘Johnny

n m f

‘Cat

n m f

‘Ray

n m f

‘Jane

n m f

‘Sue

n m f

‘Rob

n m f

???

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

