
 1

Mutually Referential Data Definitions

Corky Cartwright
Stephen Wong
Rice University

COMP 211, Spring 2010 2

 Announcements and Plan

• Reminder: Homework 2 due Friday
at 10 am.

• Plan for today
• What is a mutually referential

(inductive/recursive) data definition
and corresponding recursion template

• Simple and deep examples illustrating
the approach.

COMP 211, Spring 2010 3

 Sample Mutually Referential Data Definition

; Descendant trees [compare to ancestor trees]
; A person is a structure
; * (make-person loc n)
; where loc is a list-of-person (the children
; of the person), and n is a symbol.

; A list-of-alpha is either
; * empty, or
; * (cons a loa) where a is an alpha, and loa
; is a list-of-alpha

COMP 211, Spring 2010 4

 Why Are Mutual References Used Here?

A person is a tree node with a variable number
of subtrees (children). Hence, the children
component of a person must be a list, which has
a separate self-referential definition. Note that
the definition of person refers to
list-of-person and the definition of
list-of-person refers back to person.

COMP 211, Spring 2010 5

 Mutual Templates
• Common terminology: mutually
recursive/inductive instead of mutually
referential

• Writing one function on any of these types requires
writing a set of functions for all the mutually
recursive types

• Each reference to a mutually recursive type in a
data definition corresponds to a different recursive
call to the appropriate function in the corresponding
template.

The template for list-of-alpha is enhanced when
list-of-alpha is used in a mutually referential data
definition

COMP 211, Spring 2010 6

Descendant Tree Templates
; A person is a structure
; * (make-person n lop)
; where n is a symbol (name of the person) and
; lop (children of the person) is a list-of-person.
; We assume that list-of-alpha has already been defined.
(define-struct person (name children))
; Templates
; person-fn: person -> ...
; (define (person-fn ... p ...)
; (... (person-name p) ...
; (lop-fn (person-children ... p ...)) ...))
; lop-fn: ... list-of-person ... -> ?
; (define (lop-fn ... lop ...)
; (cond [(empty? lop) ...]
; [else
; ... (person-fn ... (first lop) ...) ...
; ... (lop-fn ... (rest lop) ...) …)]))

COMP 211, Spring 2010 7

Templates, cont.
; A list-of-person is either
; empty, or
; (cons p lop) where
; where p is a person and lop is a list-of-person
; lop-fn: ... list-of-person ... -> ?
; (define (lop-fn ... lop ...)
; (cond [(empty? lop) ...]
; [else
; ... (person-fn ... (first lop) ...) ...
; ... (lop-fn ... (rest lop) ...) …)]))

Note: you do not have to rewrite the data definition for (one definition of
list-of-alpha per file is sufficient, but you do need to rewrite the
template for list-of-alpha in the context of a mutually recursive
definition of person

COMP 211, Spring 2010 8

Function calls in templates
Mutually recursive calls are part of template

• Use of a mutually recursive type is just the
same as a recursive use of a type itself

• A set of mutually recursive type definitions
is really one big recursive type definition
with multiple parts and each part has a
template

The form of the function calls in the
template(s) is crucial for ensuring termination

COMP 211, Spring 2010 9

More about termination
• For the inductive (self-referential/recursive) types we

saw before today, a recursive functions terminates if
• it handles the base case(s) cleanly, and
• it only makes recursive calls on substructures of its primary

argument, e.g., the rest of a non-empty list

• Mutually recursive (referential) definitions are the
same

• Example: Imagine a type box that can contain bags, and a
type bag that can contain boxes. Why does the template
ensure termination?

• Any box will be bigger than any bag it contains
• Similarly for bags.
• No infinite descending chains of containment.

COMP 211, Spring 2010 10

 Sample Program on Descendant Trees

; person-count : person -> N
; Purpose: (person-count p) counts the number of people in

the person (descendant tree) p
; lop-count : list-of-person -> N
; Purpose; (lop-count lop) counts the number of people in

the list-of-person lop
; Template Instantiation
(define (person-count p)
 ... (lop-count (person-children p) ...)
(define (lop-count alop)
 (cond [(empty? alop) ...]
 [(cons? Alop) ... (person-count (first alop))
 ... (lop-count (rest alop)) ...]))

COMP 211, Spring 2010 11

 Sample Program on Descendant Trees

; Code
(define (person-count p)
 (add1 (lop-count (person-children p)))
(define (lop-count alop)
 (cond [(empty? alop) 0]
 [(cons? Alop)
 (+ (person-count (first alop))
 (lop-count (rest alop)))]))

Note: the preceding code was produced by copying the template
instantiation, erasing the ellipsis dots and inserting the text show
in red above.

COMP 211, Spring 2010 12

Another Example of Mutually
Recursive Data (Unix File System)

 ; A file is either:
 ; a raw-file, or
 ; a dir (short for directory)

 ; A dir is a structure
 ; (make-dir lonf) where lonf is a list-of-namedFile
 (define-struct dir (namedFiles))

 ; A list-of-namedFile is a form of list-of-alpha.

 ; A namedFile is a structure
 ; (make-namedFile name f) where name is a symbol and f
 ; is a file.
 (define-struct namedFile (name file))

Note: dir could be eliminated since it merely wraps a list-of-namedFile,
but the struct dir distinguishes directories from lists.

COMP 211, Spring 2010 13

Templates
; ... file ... -> ?
(define (file-fn ... f ...)
 (cond [(raw-file? f) ...] ; process raw file
 [(dir? f) ...
 ... (dir-fn ... f ...)) ...]))
; ... dir ... - > ?
(define (dir-fn ... d ...)
 ... (lonf-fn ... (dir-namedFile d) ...) ...)
; ... list-of-nameFile ... - > ?
(define (lonf-fn ... lonf ...)
 (cond [(empty? lonf) ...]
 [(cons? lonf) ...
 ... (namedFile-fn ... (first lonf) ...) ...)
 ... (lonf-fn ... (rest lonf) ...) ...]))
; ... namedfile ... - > ?
(define (namedFile-fn ... nf ...)
 ... (namedFile-name nf) ...
 ... (file-fn ... (namedFile-file nf) ...) ...)

COMP 211, Spring 2010 14

Example function on file system
; dir-find?: dir symbol -> boolean

; Purpose: (dir-find? d n) determines if a file named n occurs in dir d

; Template Instantiation

(define (dir-find? d n)
 ... (lonf-find? (dir-namedFiles d) n) ...)

(define (lonf-find? lonf n) ;; is nameFiles-find? a better name

 (cond [(empty? lonf) ...]

 [(cons? lonf)

 ... (namedFile-find? (first lonf) n)

 ... (lonf-find? (rest lonf) n) ...]))

(define (namedFile-find? nf n)

 ... (namedFile-name nf) ...

 ... (file-find? (namedFile-file nf) n) ...)
(define (file-find? f n)
 (cond [(rawFile? f) ...]
 [(dir? f) ... (dir-find? f n) ...]))

COMP 211, Spring 2010 15

Code
(define (dir-find? d n) (lonf-find? (dir-namedFiles d) n))

(define (lonf-find? lonf n)
 (cond [(empty? lonf) false]
 [(cons? lonf)
 (or (namedFile-find? (first lonf) n)
 (lonf-find? (rest lonf) n))]))

(define (namedFile-find? nf n)
 (or (equal? (namedFile-name nf) n)
 (file-find? (namedFile-file nf) n))

(define (file-find? f n)
 (cond [(rawFile? f) false]
 [(dir? f) (dir-find? f n)]))

COMP 211, Spring 2010 16

 For Next Class
• Attend lab and start on homework
• Read assigned portions of HTDP.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

