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  Announcements and Plan

• Reminder: Homework 2 due Friday 
at 10 am.

• Plan for today
• What is a mutually referential 

(inductive/recursive)  data definition 
and corresponding recursion template

• Simple and deep examples illustrating 
the approach.
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 Sample Mutually Referential Data Definition

; Descendant trees [compare to ancestor trees]
; A person is a structure
; * (make-person loc n)
;   where loc is a list-of-person (the children
;   of the person), and n is a symbol.  

; A list-of-alpha is either
; * empty, or
; * (cons a loa) where a is an alpha, and loa 
;   is a list-of-alpha
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  Why Are Mutual References Used Here?

A person is a tree node with a variable number
of subtrees (children).  Hence, the children 
component of a person must be a list, which has 
a separate self-referential definition.  Note that 
the definition of person refers to 
list-of-person and the definition of 
list-of-person refers back to person.
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 Mutual Templates
• Common terminology: mutually 
recursive/inductive instead of mutually 
referential

• Writing one function on any of these types requires 
writing a set of functions for all the mutually 
recursive types 

• Each reference to a mutually recursive type in a 
data definition corresponds to a different recursive 
call to the appropriate function in the corresponding 
template.

The template for list-of-alpha is enhanced when 
list-of-alpha is used in a mutually referential data 
definition
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Descendant Tree Templates
; A person is a structure
;  * (make-person n lop)
; where n is a symbol (name of the person) and
; lop (children of the person) is a list-of-person.
; We assume that list-of-alpha has already been defined.
(define-struct person (name children))
; Templates
; person-fn: person -> ...
; (define (person-fn ... p ...)
;   (... (person-name p) ...
;        (lop-fn (person-children ... p ...)) ... ))
; lop-fn: ... list-of-person ... -> ?
; (define (lop-fn ... lop ...)
;  (cond [(empty? lop) ...]
;        [else
;          ... (person-fn ... (first lop) ...) ... 
;          ... (lop-fn ... (rest lop) ...) …)]))
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Templates, cont.
; A list-of-person is either
;   empty, or
;   (cons p lop) where 
; where p is a person and lop is a list-of-person
; lop-fn: ... list-of-person ... -> ?
; (define (lop-fn ... lop ...)
;  (cond [(empty? lop) ...]
;        [else
;          ... (person-fn ... (first lop) ...) ... 
;          ... (lop-fn ... (rest lop) ...) …)]))

Note: you do not have to rewrite the data definition for  (one definition of 
list-of-alpha per file is sufficient, but you do need to rewrite the 
template for list-of-alpha in the context of a mutually recursive 
definition of person
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Function calls in templates
Mutually recursive calls are part of template

• Use of a mutually recursive type is just the 
same as a recursive use of a type itself

• A set of mutually recursive type definitions 
is really one big recursive type definition 
with multiple parts and each part has a 
template

The form of the function calls in the 
template(s) is crucial for ensuring termination
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More about termination
• For the inductive (self-referential/recursive) types we 

saw before today, a recursive functions terminates if
• it handles the base case(s) cleanly, and
• it only makes recursive calls on substructures of its primary 

argument, e.g., the rest of a non-empty list

• Mutually recursive (referential) definitions are the 
same

• Example:  Imagine a type box that can contain bags, and a 
type bag that can contain boxes.  Why does the template 
ensure termination?

• Any box will be bigger than any bag it contains
• Similarly for bags. 
• No infinite descending chains of containment.
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 Sample Program on Descendant Trees

; person-count : person -> N
; Purpose: (person-count p) counts the number of people in 

the person (descendant tree) p  
; lop-count : list-of-person -> N
; Purpose; (lop-count lop) counts the number of people in 

the list-of-person lop
; Template Instantiation
(define (person-count p)
  ... (lop-count (person-children p) ... )
(define (lop-count alop)
  (cond [(empty? alop) ... ]
        [(cons? Alop) ... (person-count (first alop))
                ... (lop-count (rest alop)) ... ]))
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 Sample Program on Descendant Trees

; Code
(define (person-count p)
  (add1 (lop-count (person-children p)))
(define (lop-count alop)
  (cond [(empty? alop) 0]
        [(cons? Alop) 
         (+ (person-count (first alop))
            (lop-count (rest alop)))]))

Note: the preceding code was produced by copying the template 
instantiation, erasing the ellipsis dots and inserting the text show 
in red above.
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Another Example of Mutually 
Recursive Data (Unix File System)

  ; A file is either:
  ;   a raw-file, or
  ;   a dir (short for directory)

  ; A dir is a structure
  ; (make-dir lonf) where lonf is a list-of-namedFile
  (define-struct dir (namedFiles))

  ; A list-of-namedFile is a form of list-of-alpha.

  ; A namedFile is a structure
  ; (make-namedFile name f) where name is a symbol and f
  ; is a file.
  (define-struct namedFile (name file))

Note: dir could be eliminated since it merely wraps a list-of-namedFile, 
but the struct dir distinguishes directories from lists.
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Templates
; ... file ... -> ?
(define (file-fn ... f ...)
  (cond [(raw-file? f) ...] ; process raw file
        [(dir? f) ... 
         ... (dir-fn ... f ...)) ... ]))
; ... dir ... - > ?
(define (dir-fn ... d ...)
   ... (lonf-fn ... (dir-namedFile d) ...) ... )
; ... list-of-nameFile ... - > ?
(define (lonf-fn ... lonf ... )
  (cond [(empty? lonf) ... ]
        [(cons? lonf) ...
         ... (namedFile-fn ... (first lonf) ... ) ... )
         ... (lonf-fn ... (rest lonf) ...) ... ]))
; ... namedfile ... - > ?
(define (namedFile-fn ... nf ...)
  ... (namedFile-name nf) ...
  ... (file-fn ... (namedFile-file nf) ... ) ... )
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Example function on file system
; dir-find?: dir symbol -> boolean

; Purpose: (dir-find? d n) determines if a file named n occurs in dir d

; Template Instantiation

(define (dir-find? d n) 
  ... (lonf-find? (dir-namedFiles d) n) ... )

(define (lonf-find? lonf n)   ;; is nameFiles-find? a better name

  (cond [(empty? lonf) ...]

        [(cons? lonf) 

         ... (namedFile-find? (first lonf) n)

         ... (lonf-find? (rest lonf) n) ... ]))

(define (namedFile-find? nf n)

  ... (namedFile-name nf) ... 

  ... (file-find? (namedFile-file nf) n) ... )
(define (file-find? f n)
  (cond [(rawFile? f) ... ]
        [(dir? f) ... (dir-find? f n) ... ]))
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Code
(define (dir-find? d n) (lonf-find? (dir-namedFiles d) n))

(define (lonf-find? lonf n)
  (cond [(empty? lonf) false]
        [(cons? lonf) 
         (or (namedFile-find? (first lonf) n)
             (lonf-find? (rest lonf) n))]))

(define (namedFile-find? nf n)
  (or (equal? (namedFile-name nf) n) 
      (file-find? (namedFile-file nf) n))

(define (file-find? f n)
  (cond [(rawFile? f) false]
        [(dir? f) (dir-find? f n)]))
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 For Next Class
• Attend lab and start on homework
• Read assigned portions of HTDP.
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