
COMP 322: Fundamentals of
Parallel Programming

Lecture 2: Task Creation and
Termination using Async & Finish

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 2 12 January 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Acknowledgments for Todayʼs Lecture"
•  COMP 322 Lecture 2 handout

COMP 322, Spring 2011 (V.Sarkar)	

3

Habanero-Java (HJ) Language"
•  HJ is a new language developed in the Rice Habanero

Multicore Software research project "
— Derived from IBMʼs Java-based X10 v1.5 implementation in 2007"
— HJ is an extension of Java 1.4 "

–  Java 5 & 6 language features (generics, metadata, etc.) are
currently not supported by the HJ front-end"

–  However, Java 5 & 6 libraries and classes can be called from
HJ programs"
•  Just donʼt call a method that performs a blocking operation

because that will mess up the HJ scheduler!"

•  Four classes of parallel programming primitives in HJ:"
1.  Dynamic task creation & termination: forall, async, finish, get"
2.  Mutual exclusion and isolation: isolated"
3.  Collective and point-to-point synchronization: phaser, next"
4.  Locality control --- task and data distributions: places, here"

COMP 322, Spring 2011 (V.Sarkar)	

4

HJ Compilation and Execution Environment"

Caveat: this is a research prototype with known limitations. Please report bugs and
suggestions to comp322-staff@mailman.rice.edu.!

Foo.hj

HJ compiler HJ compiler translates Foo.hj to Foo.class, and inserts
calls to HJ runtime as needed

Foo.class

HJ source program --- must contain a class named Foo
with a public static void main(String[] args) method

HJ Runtime Environment =
JRE + HJ libraries +

HJ Multithreaded Runtime

HJ Abstract Performance Metrics
(optional, enabled by –perf=true option for hj command) HJ Program Output

hjc Foo.hj

hj –places m:n Foo

HJ runtime allocates m*n worker threads across m
“places” (default values: m = 1, n = 3)

COMP 322, Spring 2011 (V.Sarkar)	

5

Async and Finish Statements for Task
Creation and Termination (Recap)"

async S "
•  Creates a new child task that

executes statement S "
•  Parent task immediately

continues to statement following
the async"

finish S "
  Execute S, but wait until all

(transitively) spawned asyncs
in Sʻs scope have terminated. "

  Implicit finish between start
and end of main program"

//Task T0(Parent)

finish { //Begin finish

 async

 STMT1; //T1(Child)

 //Continuation

 STMT2; //T0

} //Continuation //End finish

STMT3; //T0

STMT2

async

STMT1

terminate
wait

T1 T0

STMT3

COMP 322, Spring 2011 (V.Sarkar)	

6

Async Example #1"
// Example 1: execute iterations of a counted for loop in parallel
// (we will later see forall as a shorthand for this common case)
for (int i = 0; i < A.length; i++)
 async { A[i] = B[i] + C[i]; }

COMP 322, Spring 2011 (V.Sarkar)	

7

Async Example #2"
// Example 2: execute iterations of a while loop in parallel
p = first;
while (p != null) {
 async { p.x = p.y + p.z; }
 p = p.next;
}

COMP 322, Spring 2011 (V.Sarkar)	

8

Async Example #3"
// Example 3: Example 2 rewritten as a recursive method
static void process(T p) {
 if (p != null) {
 async { p.x = p.y + p.z; }
 process(p.next);
 }
}

COMP 322, Spring 2011 (V.Sarkar)	

9

Async Example #4"
// Example 4: execute method calls in parallel
async left_s = quickSort(left);
async right_s = quickSort(right);

COMP 322, Spring 2011 (V.Sarkar)	

10

Scheduling HJ tasks on processors in a
parallel machine"

w1 w2 w3 w4

push
work

pull
work

Logical Work Queue
(async’s & continuations)

Workers

Local variables are
private to each task

Static & instance fields are shared among tasks

•  HJ runtime creates a small number of worker threads, typically
one per core

•  Workers push async’s/continuations into a logical work queue
•  when an async operation is performed
•  when an end-finish operation is reached

•  Workers pull task/continuation work item when they are idle

COMP 322, Spring 2011 (V.Sarkar)	

11

Continuations"
•  A continuation is one of two kinds of program points

— The point in the parent task immediately following an async
— The point immediately following an end-finish

•  Continuations are also referred to as task-switching points
— Program points at which a worker may switch execution between

different tasks

finish { // F1
 async A1;
 finish { // F2
 async A3;
 async A4;
 }
 S5;
}

Continuations

COMP 322, Spring 2011 (V.Sarkar)	

12

Local Variables"
•  Java variables can be classified as local or shared
•  A local variable is only visible in the scope in which it is defined
•  A shared variable (static field, instance field, array element)

can potentially be accessed anywhere
•  Three rules for accessing local variables across tasks in HJ:
// Rule 1: an inner async may access the value of any outer final local var
final int i1 = 1; async { ... = i1; /* i1=1 */ }

// Rule 2: an inner async may access the value of any outer local var
int i2 = 2; // i2=2 is copied on entry into the async like a method param
async { ... = i2; /* i2=2*/}
i2 = 3; // This assignment is not seen by the above async

// Rule 3: an inner async is not permitted to modify an outer local var
int i3; async { i3 = ...; /* ERROR */}

COMP 322, Spring 2011 (V.Sarkar)	

13

Finish Statements"
•  Implicit finish statement in main() method
•  Each async task has a unique Immediately Enclosing Finish (IEF)
•  One possible approach to converting a sequential Java program

to a parallel HJ program
— Insert async’s at points where parallelism is desired
— Then insert finish’s to ensure that the parallel version produces the

same results as the sequential version

COMP 322, Spring 2011 (V.Sarkar)	

14

Finish Example #1"
// Example 1: Sequential version
for (int i = 0; i < a.length; i++) A[i] = B[i] + C[i];
System.out.println(A[0]);

// Example 1: Incorrect parallel version
for (int i = 0; i < a.length; i++) async A[i] = B[i] + C[i];
System.out.println(A[0]);

// Example 1: Correct parallel version
finish for (int i = 0; i < a.length; i++) async A[i] = B[i] + C[i];
System.out.println(A[0]);

COMP 322, Spring 2011 (V.Sarkar)	

15

Finish Example #2"
// Example 2: Sequential version
p = first;
while (p != null) {
 p.x = p.y + p.z; p = p.next;
} System.out.println(first.x);

// Example 2: Incorrect parallel version
p = first;
while (p != null) {
 async { p.x = p.y + p.z; }
 p = p.next;
} System.out.println(first.x);

COMP 322, Spring 2011 (V.Sarkar)	

16

Finish Example #2 (contd)"
// Example 2: Correct parallel version
p = first;
finish while (p != null) {
 async { p.x = p.y + p.z; }
 p = p.next;
}
System.out.println(first.x);

COMP 322, Spring 2011 (V.Sarkar)	

17

Which statements can potentially be
executed in parallel with each other?"

finish { // F1
 // Part 1 of Task A0
 async {A1; async A2;}
 finish { // F2
 // Part 2 of Task A0
 async A3;
 async A4;
 }
 // Part 3 of Task A0
}

•  Example: A2 can potentially execute in parallel with A3 and A4,
but Part 3 of A0 cannot execute in parallel with A3 and A4

COMP 322, Spring 2011 (V.Sarkar)	

18

Async-Finish Exception Semantics"
•  Any exception thrown by an async is accumulated into a

MultiException at its Immediately Enclosing Finish (IEF)

finish { // F1
 // Part 1 of Task A0
 async {A1; async A2;}
 try {
 finish { // F2
 // Part 2 of Task A0
 try { async A3; }
 catch (Exception e1) { }; // will not catch exception in A3
 async A4;
 }
 } catch (Exception e2) { }; // will catch exception in A3
 // Part 3 of Task A0 }

