
COMP 322: Fundamentals of
Parallel Programming

Lecture 10: Critical sections, Isolated
statement

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 10 2 February 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Acknowledgments for Todayʼs Lecture"
•  Lecture 10 handout

COMP 322, Spring 2011 (V.Sarkar)	

3

Introduction"
•  For the programming constructs async, finish, future, get,

forall, the following situation was defined to be a data race
error
— when two accesses on the same shared location can potentially

execute in parallel such that at least one access is a write.

•  However, there are many cases in practice when two tasks may
legitimately need to perform conflicting accesses to shared
locations.

COMP 322, Spring 2011 (V.Sarkar)	

4

Example of two tasks performing
conflicting accesses"

1.  class DoublyLinkedList {
2.  DoublyLinkedList prev, next;
3.  . . .
4.  void delete() {
5.  isolated { // start of mutual exclusion region (critical section)
6.  if (this.prev != null) this.prev.next = this.next;
7.  if (this.next != null) this.next.prev = this.prev
8.  } // end of mutual exclusion region (critical section)
9.  . . .
10.  }
11.  . . .
12. }
13. . . .
14. static void deleteTwoNodes(DoublyLinkedList L) {
15.  finish {
16.  async L.delete();
17.  async L.next.delete();
18.  }
19. }

COMP 322, Spring 2011 (V.Sarkar)	

5

How to enforce mutual exclusion?"
•  The predominant approach to ensure mutual exclusion proposed

many years ago is to enclose the code region in a critical
section.
— “In concurrent programming a critical section is a piece of code that

accesses a shared resource (data structure or device) that must not
be concurrently accessed by more than one thread of execution. A
critical section will usually terminate in fixed time, and a thread,
task or process will have to wait a fixed time to enter it (aka
bounded waiting). Some synchronization mechanism is required at
the entry and exit of the critical section to ensure exclusive use,
for example a semaphore.”

COMP 322, Spring 2011 (V.Sarkar)	

6

HJ isolated statement "

isolated <body>
•  Two tasks executing isolated statements with interfering

accesses must perform the isolated statement in mutual
exclusion
— Two instances of isolated statements, ⟨stmt1⟩ and ⟨stmt2⟩, are said

to interfere with each other if both access a shared location, such
that at least one of the accesses is a write.

 Weak isolation guarantee: no mutual exclusion applies to non-
isolated statements i.e., to (isolated, non-isolated) and (non-
isolated, non-isolated) pairs of statement instances

•  Isolated statements may be nested (redundant)
•  Isolated statements must not contain any other parallel

statement: async, finish, get, forall
•  In case of exception, all updates performed by <body> before

throwing the exception will be observable after exiting <body>

COMP 322, Spring 2011 (V.Sarkar)	

7

How small or big should an isolated
statement be?"

•  Too small  may lose invariants desired from mutual exclusion
•  Too big  limits parallelism

•  Observation: no combination of finish, async, get, forall and
isolated constructs can create a deadlock cycle among tasks.

COMP 322, Spring 2011 (V.Sarkar)	

8

Serialized Computation Graph for
Isolated Statements"

•  Model each instance of an isolated statement as a distinct step
(node) in the CG.

•  Need to reason about the order in which interfering isolated
statements are executed
— complicated because the order may vary from execution to

execution

•  Introduce Serialized Computation Graph (SCG) that includes a
specific ordering of all interfering isolated statements.
— SCG consists of a CG with additional serialization edges.
— Each time an isolated step, S′, is executed, we add a serialization

edge from S to S′ for each isolated step, S, that has already
executed such that S and S′ have interfering accesses.

— An SCG represents a set of executions in which all interfering
isolated statements execute in the same order.

COMP 322, Spring 2011 (V.Sarkar)	

9

Example of Serialized Computation
Graph with Serialization Edges"

v1 v2 v16 v17 v18 v19

v3 v6 v9 v10 v11 v15 v20 v21 v22

v23

v4 v5 v7 v8 v12 v13 v14

Continue edge Spawn edge Join edge

!1

!2

!3 !4 !5

!6

Serialization edge v10: isolated { x ++; y = 10; }
v11: isolated { x++; y = 11; }
v16: isolated { x++; y = 16; }

COMP 322, Spring 2011 (V.Sarkar)	

10

Parallel Depth-First Search Spanning Tree  
revisited with Object-based Isolation"

DFS

compute

compute

compute
compute

1.   class V {!
2.   V [] neighbors; // adjacency list for input

graph!
3.   V parent; // output value of parent in

spanning tree!
4.   boolean tryLabeling(V n) {!
5.   isolated if (parent == null) parent=n;!
6.   return parent == n;!
7.   } // tryLabeling!
8.   void compute() {!
9.   for (int i=0; i<neighbors.length; i++) { !
10.   V child = neighbors[i]; !
11.   if (child.tryLabeling(this))!
12.   async child.compute(); //escaping async!
13.   } !
14.   } // compute!
15.  } // class V!
16.  . . .!
17.  root.parent = root; // Use self-cycle to identify

root!
18.  finish root.compute();!
19.  . . .!

Spawn edge"

Join edge"

COMP 322, Spring 2011 (V.Sarkar)	

11

Formal Definition of Data Races"
 Formally, a data race occurs on location L in a program
execution with computation graph CG if there exist steps S1
and S2 in computation graph CG such that:
1.  S1 does not depend on S2 and S2 does not depend on S1 i.e.,

there is no path of dependence edges from S1 to S2 or from S2
to S1 in CG, and

2.  Both S1 and S2 read or write L, and at least one of the accesses
is a write.

 Apply above definition to an SCG

