
COMP 322 Spring 2012

Lab 2: Computation Graphs, Abstract Performance Metrics
Instructor: Vivek Sarkar

1 Update your HJ Installation

Please update your HJ installation to make sure that you have the latest updates and bug fixes.

1. Download the jar file for DrHJ from http://www.cs.rice.edu/~vs3/downloads/hj/drhj.jar

2. A link to the above jar file can be obtained by following these links from the course web page: “HJ
Info” → “HJ Download and Setup”, and then searching for “Download the jar file corresponding to
DrHJ”

NOTE #1 (Optional): If you prefer to use a command-line interface instead of DrHJ to compile and
run HJ programs, you can down load an HJ installation from the “HJ Download and Setup” page listed
above by searching for “Download the zip file containing the HJ package” and then following the subsequent
instructions. The command-line interface only works on Unix-based systems (like CLEAR, Sugar, Mac OS),
and not on Windows. In contrast, DrHJ runs on both Unix-based systems and also on some Windows
installations. (For Windows, you should download a standard full JDK from Oracle to maximize the chances
of DrHj working on your system.)

2 Example HJ Program with Abstract Performance Metrics

1. Download the ArraySum1.hj file from the Code Examples column for Lecture 3 in the course web
page, https://wiki.rice.edu/confluence/display/PARPROG/COMP322.

2. Compile this HJ program. Click “Compile” in DrHJ, or (if you’re not using DrHJ) type the following
command on the command line: hjc ArraySum1.hj

3. Run the program with an option to generate abstract performance metrics. Select “Show Abstract
Execution Metrics” in DrHJ’s Compiler Option preferences (see Figure 1), or (if you’re not using DrHJ)
type the following command on the command line: hj -perf=true ArraySum1

4. Notice the following statistics printed at the end of program execution

(a) “TOTAL NUMBER OF TASKS”, the total number of async tasks created

(b) “TOTAL NUMBER OF OPS DEFINED BY CALLS TO hj.lang.perf.addLocalOps()”, the total WORK
in the computation in units implicitly defined by calls to perf.addLocalOps()

(c) “CRITICAL PATH LENGTH OF OPS DEFINED BY CALLS TO hj.lang.perf.addLocalOps()”, the crit-
ical path length (CPL) of the computation in units implicitly defined by calls to perf.addLocalOps()

(d) “IDEAL SPEEDUP IN NUMBER OF OPS, (TOTAL NUMBER) / (CRIT PATH LENGTH)”, the ideal speedup
or parallelism in the computation

3 Generating a Computation Graph Figure from an HJ Program
Execution

The HJ compiler supports a “-dcg” option to enable automatic generation of computation graphs from
dynamic executions of the HJ program. This option can be enabled by selecting the appropriate option in

1 of 2

http://www.cs.rice.edu/~vs3/downloads/hj/drhj.jar
https://wiki.rice.edu/confluence/display/PARPROG/COMP322


COMP 322
Spring 2012

Lab 2: Computation Graphs, Abstract Performance Metrics

Figure 1: Selection of “Show Abstract Execution Metrics” in DrHJ’s Compiler Option preferences

DrHJ’s Compiler Option preferences (see Figure 1), or (if you’re not using DrHJ) by typing the following
command on the command line: hjc -dcg ArraySum1

When the HJ program is executed with this option, it will produce a file named ArraySum1.dot. The .dot

file is a specification of the Computation Graph as a directed graph that can be visualized using the GraphViz
package available at http://www.graphviz.org/. The dot command can also be used on the command line
on CLEAR systems. Once installed, you can either use theGraphViz program to examine the .dot file, or
issue the following command on the command line: dot -Tpdf ArraySum1.dot -o ArraySum1.pdf

Examine the Computation Graph figure obtained for n=8 (the default value for ArraySum1) and match each
node in the graph with one or more statements from ArraySum1.hj.

IMPORTANT: Do not select both the Abstract Performance Metrics and the Computation Graph options
at the same time.

4 Abstract Performance Metrics for Substring Search Problem

1. Download the Search.hj file from the Code Examples column for Lab 2 in the course web page,
https://wiki.rice.edu/confluence/display/PARPROG/COMP322.

2. Search.hj contains a sequential program to search for a substring (pattern) in a given string (text).
This program has been instrumented to count each character comparison as 1 unit of work from the
viewpoint of abstract performance metrics, and ignore everything else.

3. Your lab assignment is to convert it to a parallel program that produces the correct answer with a
smaller critical path length (ideal parallel time) than the sequential version.

REMINDER: Do not select both the Abstract Performance Metrics and the Computation Graph options
at the same time.

2 of 2

http://www.graphviz.org/
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

	Update your HJ Installation
	Example HJ Program with Abstract Performance Metrics
	Generating a Computation Graph Figure from an HJ Program Execution
	Abstract Performance Metrics for Substring Search Problem

