
COMP 322: Fundamentals of
Parallel Programming

Lecture 14: Unification of Barrier and
Point-to-point Synchronization with

Phasers
Vivek Sarkar

Department of Computer Science, Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 14 10 February 2012

COMP 322, Spring 2012 (V.Sarkar)

Point-to-point synchronization

iter = i

iter = i+1

Barrier synchronization

Barrier vs Point-to-Point Synchronization for
One-Dimensional Iterative Averaging Example

iter = i

iter = i+1

2

COMP 322, Spring 2012 (V.Sarkar)

Left-Right Neighbor Synchronization
Example

1. finish { // Expanded finish-for-async version of forall

2. for (point[i] : [1:m])

3. async {

4. doPhase1(i);

5. // Iteration i waits for i-1 and i+1 to complete Phase 1

5 doPhase2(i);

6 } // async

7 } // finish

• Need synchronization where iteration i only waits for iterations
i−1 and i+1 to complete their work in doPhase1() before it
starts doPhase2(i)? (Less constrained than a barrier)

COMP 322, Spring 2011 (V.Sarkar)!18

Barrier & P-2-P Sync for 1-D
Averaging!

doPhase1(i)

doPhase2(i)

 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

3

COMP 322, Spring 2012 (V.Sarkar)

Phasers: a unified construct for barrier
and point-to-point synchronization

• Previous examples motivated the need for point-to-point
synchronization

• HJ phasers unify barriers with point-to-point synchronization

• A limited version of phasers was also added to the Java 7
java.util.concurrent.Phaser library (with acknowledgment to
Rice)

• Phaser properties
—Barrier and point-to-point synchronization
—Supports dynamic parallelism i.e., the ability for tasks to drop

phaser registrations on termination, and for new tasks to add new
phaser registrations.

—Deadlock freedom
—Support for phaser accumulators (reductions that can be performed

with phasers)

4

COMP 322, Spring 2012 (V.Sarkar)

• Phaser allocation
— phaser ph = new phaser(mode);

– Phaser ph is allocated with registration mode
– Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)

• Registration Modes
— phaserMode.SIG, phaserMode.WAIT, phaserMode.SIG_WAIT, phaserMode.SIG_WAIT_SINGLE
— NOTE: phaser WAIT has no relationship to Java wait/notify

• Phaser registration
— async phased (ph1<mode1>, ph2<mode2>, …) <stmt>

– Spawned task is registered with ph1 in mode1, ph2 in mode2, …

– Child task’s capabilities must be subset of parent’s
– async phased <stmt> propagates all of parent’s phaser registrations to child

• Synchronization
— next;

– Advance each phaser that current task is registered on to its next phase
– Semantics depends on registration mode

Summary of Phaser Construct

5

COMP 322, Spring 2012 (V.Sarkar)

Capability Hierarchy

• At any point in time, a task can be registered in one of four
modes with respect to a phaser: SIG_WAIT_SINGLE,
SIG_WAIT, SIG, or WAIT. The mode defines the set of
capabilities — signal, wait, single — that the task has with
respect to the phaser. The subset relationship defines a natural
hierarchy of the registration modes.

SIG_WAIT_SINGLE = { signal, wait, single }

SIG_WAIT = { signal, wait }

SIG = { signal } WAIT = { wait }

6

COMP 322, Spring 2012 (V.Sarkar)

Simple Example with Four Async Tasks
and One Phaser

1. finish {

2. ph = new phaser(); // Default mode is SIG_WAIT

3. async phased(ph<phaserMode.SIG>){ //A1 (SIG mode)

4. doA1Phase1(); next;

5. doA1Phase2(); }

6. async phased { //A2 (default SIG_WAIT mode from parent)

7. doA2Phase1(); next;

8. doA2Phase2(); }

9. async phased { //A3 (default SIG_WAIT mode from parent)

10. doA3Phase1(); next;

11. doA3Phase2(); }

12. async phased(ph<phaserMode.WAIT>){ //A4 (WAIT mode)

13. doA4Phase1(); next; doA4Phase2(); }

14. }

7

COMP 322, Spring 2012 (V.Sarkar)

Simple Example with Four Async Tasks
and One Phaser (contd)

8

Semantics of next depends on registration mode!
SIG_WAIT: next = signal + wait!
SIG: next = signal (Don’t wait for any task)!
WAIT: next = wait (Don’t disturb any task)!

signal!

wait!

�� �� �� ��

next!
������

SIG! SIG_WAIT!SIG_WAIT! WAIT!

 A master task receives all signals and broadcasts a barrier completion!

COMP 322, Spring 2012 (V.Sarkar)

forall barrier is just an implicit phaser
1. forall (point[i,j] : [iLo:iHi,jLo:jHi])

2. <body>

is equivalent to

3. finish {

4. // Implicit phaser

5. phaser ph = new phaser(phaserMode.SIG_WAIT);

6. for(point[i,j] : [iLo:iHi,jLo:jHi])

7. async phased(phaserMode.SIG_WAIT)

8. <body> // next statements refer to ph

9. }

9

COMP 322, Spring 2012 (V.Sarkar)

Left-Right Neighbor Synchronization Example

COMP 322, Spring 2011 (V.Sarkar)!18

Barrier & P-2-P Sync for 1-D
Averaging!

doPhase1(i)

doPhase2(i)

 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

1. finish {
2. phaser[] ph = new phaser[m+2];
3. for(point [i]:[0:m+1]) ph[i] = new phaser();
4. for(point [i] : [1:m])
5. async phased(ph[i]<SIG>, ph[i-1]<WAIT>, ph[i+1]<WAIT>) {
6. doPhase1(i);
7. next; // Signal ph[i] & wait on ph[i-1], ph[i+1]
8. doPhase2(i);
9. }
10.}

10

COMP 322, Spring 2012 (V.Sarkar)

Left-Right Neighbor Synchronization
Example for m=3

11

COMP 322, Spring 2012 (V.Sarkar)

Computation Graph for m=3 example
(without async/finish nodes and edges)

6

11

16

7-signal 7-wait

12-signal

17-signal

12-wait

17-wait

ph1.next
-start(0à1)

ph1.next
-end(0à1)

ph2.next
-start(0à1)

ph2.next
-end(0à1)

ph3.next
-start(0à1)

ph3.next
-end(0à1)

8

13

18

spawn continue signal wait join

12

COMP 322, Spring 2012 (V.Sarkar)

Adding Phaser Operations to the
Computation Graph

CG node = step

Step boundaries are induced by continuation points

• async: source of a spawn edge

• end-finish: destination of join edges

• future.get(): destination of a join edge

• signal, drop: source of signal edges

• wait: destination of wait edges

• next: modeled as signal + wait

CG also includes an unbounded set of pairs of phase transition
nodes for each phaser ph allocated during program execution

• ph.next-start(iài+1) and ph.next-end(iài+1)

13

COMP 322, Spring 2012 (V.Sarkar)

Adding Phaser Operations to the
Computation Graph (contd)

CG edges enforce ordering constraints among the nodes

• continue edges capture sequencing of steps within a task

• spawn edges connect parent tasks to child async tasks

• join edges connect descendant tasks to their Immediately Enclosing
Finish (IEF) operations and to get() operations for future tasks

• signal edges connect each signal or drop operation to the
corresponding phase transition node, ph.next-start(iài+1)

• wait edges connect each phase transition node,
ph.next-end(iài+1) to corresponding wait or next operations

• single edges connect each phase transition node, ph.next-start(iài
+1) to the start of a single statement instance, and from the end
of that single statement to the phase transition node, ph.next-
end(iài+1)

14

COMP 322, Spring 2012 (V.Sarkar)

Full Computation Graph for m=3
example

1,2,3,4

6

11

16

7-signal 7-wait

12-signal

17-signal

12-wait

17-wait

ph1.next
-start(0à1)

ph1.next
-end(0à1)

ph2.next
-start(0à1)

ph2.next
-end(0à1)

ph3.next
-start(0à1)

ph3.next
-end(0à1)

8

13

18

20-drop 20-end-finish

spawn continue signal wait join

15

1. double[] gVal=new double[n+2]; double[] gNew=new double[n+2];

2. gVal[n+1] = 1; gNew[n+1] = 1;

3. int Cj = Runtime.getNumOfWorkers();

4. finish {

5. phaser ph = new phaser[Cj+2];

6. for(point [i]:[0:Cj+1]) ph[i] = new phaser();

7. for(point [jj]:[0:Cj-1])

8. async phased(ph[jj+1]<SIG>,ph[jj]<WAIT>, ph[jj+2]<WAIT>) {

9. double[] myVal = gVal; double[] myNew = gNew; // Local copy of pointers

10. for (point [iter] : [0:numIters-1]) {

11. for (point [j]:getChunk([1:n],[Cj],[jj])) // Iterate within chunk

12. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

13. next; // Point-to-point synchronization

14. // Swap myVal and myNew

15. double[] temp=myVal; myVal=myNew; myNew=temp;

16. // myNew becomes input array for next iter

17. } // for

18. } // async

19. } // finish

COMP 322, Spring 2012 (V.Sarkar)

One-Dimensional Iterative Averaging with Point-to-Point
Synchronization (compare with slide 9, Lecture 13)

iter

iter+1

Task i=0 Task i=1 Task i=2 next next

16

COMP 322, Spring 2012 (V.Sarkar)

Signal statement
• When a task T performs a signal operation, it notifies all the

phasers it is registered on that it has completed all the work
expected by other tasks in the current phase (“shared” work).
—Since signal is a non-blocking operation, an early execution of signal

cannot create a deadlock.

• Later, when T performs a next operation, the next degenerates
to a wait since a signal has already been performed in the
current phase.

• The execution of “local work” between signal and next is
performed during phase transition
—Referred to as a “split-phase barrier” or “fuzzy barrier”

17

COMP 322, Spring 2012 (V.Sarkar)

Example of Split-Phase Barrier

18

COMP 322, Spring 2012 (V.Sarkar)

Computation Graph for Split-Phase Barrier Example
(without async and finish nodes and edges)

4

11

5-signal 7-wait

12-signal 14-wait

ph.next
-start(0à1)

ph.next
-end(0à1)

8

15

spawn continue signal wait join

6

13

19

COMP 322, Spring 2012 (V.Sarkar)

Full Computation Graph for Split-Phase
Barrier Example

2

4

11

5-signal 7-wait

12-signal 14-wait

ph.next
-start(0à1)

ph.next
-end(0à1)

8

15

20-drop 20-end-finish

spawn continue signal wait join

6

13

20

1. double[] gVal=new double[n+2]; double[] gNew=new double[n+2];

2. gVal[n+1] = 1; gNew[n+1] = 1;

3. int Cj = Runtime.getNumOfWorkers();

4. finish {

5. phaser ph = new phaser[Cj+2];

6. for(point [i]:[0:Cj+1]) ph[i] = new phaser();

7. for(point [jj]:[0:Cj-1])

8. async phased(ph[jj+1]<SIG>,ph[jj]<WAIT>, ph[jj+2]<WAIT>) {

9. double[] myVal = gVal; double[] myNew = gNew; // Local copy of pointers

10. for (point [iter] : [0:numIters-1]) {

11. region r = getChunk([1:n],[Cj],[jj]); int lo = r.rank(0).low(); int hi = r.rank(0).high();

12. myNew[lo] = (myVal[lo-1] + myVal[lo+1])/2.0; myNew[hi] = (myVal[hi-1] + myVal[hi+1])/2.0;

13. signal; // signal ph[jj+1]

14. for (point [j]: [lo+1:hi-1]) // Iterate within chunk

15. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

16. next; // wait on ph[jj] and ph[jj+2]

17. // Swap myVal and myNew

18. double[] temp=myVal; myVal=myNew; myNew=temp;

19. // myNew becomes input array for next iter

20. } // for

21. } // finish

COMP 322, Spring 2012 (V.Sarkar)

Optimized One-Dimensional Iterative Averaging with
Split-Phase Point-to-Point Synchronization

21

COMP 322, Spring 2012 (V.Sarkar)

Announcements
• Homework 3 due on Wednesday, Feb 22nd

—Performance results for parts 2 and 3 of assignment must be
obtained on Sugar (see Section 4)

—Start early --- you should complete the ideal parallel version this
week

• Exam 1 will be held in the lecture on Friday, Feb 24th
—Closed book 50-minute exam
—Scope of exam includes lectures up to Monday, Feb 20th
—Feb 22nd lecture will be a midterm review before exam
—Contact me ASAP if you have an extenuating circumstance and need

to take the midterm at an alternate time

22

