
COMP 322: Fundamentals of
Parallel Programming

Lecture 19: Midterm Review

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 19 22 February 20121

COMP 322, Spring 2012 (V.Sarkar)

Async and Finish Statements for Task
Creation and Termination (Lecture 1)

async S

• Creates a new child task that
executes statement S

finish S
§ Execute S, but wait until all

asyncs in S’s scope have
terminated.

// T0(Parent task)
STMT0;
finish { //Begin finish
 async {
 STMT1; //T1(Child task)
 }
 STMT2; //Continue in T0
 //Wait for T1
} //End finish
STMT3; //Continue in T0

STMT2

fork

STMT1

join

T1 T0

STMT3

STMT0

2

COMP 322, Spring 2012 (V.Sarkar)

Computation Graphs for HJ Programs
(Lecture 2)

• A Computation Graph (CG) captures the dynamic
execution of an HJ program, for a specific input

• CG nodes are “steps” in the program’s execution
— A step is a sequential subcomputation without any
async, begin-finish and end-finish operations

• CG edges represent ordering constraints
— “Continue” edges define sequencing of steps within a
task

— “Spawn” edges connect parent tasks to child async
tasks

— “Join” edges connect the end of each async task to
its IEF’s end-finish operations

3

COMP 322, Spring 2012 (V.Sarkar)

Which statements can potentially be
executed in parallel with each other?

1. finish { // F1

2. async A1;

3. finish { // F2

4. async A3;

5. async A4;

6. } // F2

7. S5;

8. } // F1

F1-endF1-start F2-start F2-end

A1

A3

A4

S5

Computation Graph

spawn join

4

COMP 322, Spring 2012 (V.Sarkar)

Complexity Measures for Computation Graphs

Define

• TIME(N) = execution time of node N

• WORK(G) = sum of TIME(N), for all nodes N in CG G
—WORK(G) is the total work to be performed in G

• CPL(G) = length of a longest path in CG G, when
adding up execution times of all nodes in the path
—Such paths are called critical paths
—CPL(G) is the length of these paths (critical path
length)

5

COMP 322, Spring 2012 (V.Sarkar)

Example (contd)
• Assume time(N) = 1 for all nodes in this graph

CPL(G) = 9

Ideal speedup
= WORK(G)/CPL(G)
= 2

6

COMP 322, Spring 2012 (V.Sarkar)

Lower Bounds on Execution Time
(Lecture 3)

• Let TP = execution time of computation graph on P processors

—Assume an idealized machine where node N takes TIME(N)
regardless of which processor it executes on, and that
there is no overhead for creating parallel tasks

• Observations
—T1 = WORK(G)

—T∞ = CPL(G)

• Lower bounds
—Capacity bound: TP ≥ WORK(G)/P

—Critical path bound: TP ≥ CPL(G)

• Putting them together
—TP ≥ max(WORK(G)/P, CPL(G))

7

COMP 322, Spring 2012 (V.Sarkar)

Upper Bound on Execution Time:
Greedy-Scheduling Theorem

Proof sketch:
• Define a time step to be complete if

≥ P nodes are ready at that time, or
incomplete otherwise

complete time steps ≤ WORK(G)/P,
since each complete step performs P
work.

incomplete time steps ≤ CPL(G), since
each incomplete step reduces the
span of the unexecuted dag by 1.

P = 3

Theorem [Graham ’66]. Any
greedy scheduler achieves

TP ≤ WORK(G)/P + CPL(G)

8

COMP 322, Spring 2012 (V.Sarkar)

ArraySum1: computing the sum of
arbitrary sized arrays

for (int stride = 1; stride < X.length ; stride *= 2) {

 // Compute size = number of additions to be performed in stride

 int size=ceilDiv(X.length,2*stride);

 finish for(int i = 0; i < size; i++)

 async {

 if ((2*i+1)*stride < X.length)

 X[2*i*stride]+=X[(2*i+1)*stride];

 } // finish-for-async

} // for

// Divide x by y, round up to next largest int, and return result

static int ceilDiv(int x, int y) { return (x+y-1) / y; }

9

COMP 322, Spring 2012 (V.Sarkar)

Reduction Tree Schema for computing
Array Sum in parallel

Observations:

• This algorithm overwrites X (make a copy if X is needed later)

• stride = distance between array subscript inputs for each addition
• size = number of additions that can be executed in parallel in each

level (stage)

10

COMP 322, Spring 2012 (V.Sarkar)

ArraySum1 pre-pass when P < array length
(Lecture 4)

1. // Start of pre-pass: compute P partial sums in parallel

2. finish for(int j = 0; j < P; j++) // Create P tasks

3. async {

4. // Compute sum of A[j],A[j+P],... in task (processor) j

5. // Any other decomposition into P partial sums is fine too

6. for(int i = j; i < A.length; i += P) X[j] += A[i];

7. } // finish-for-async

8. // End of pre-pass: now X[0..P-1] has P partial sums of array A

9. // Use ArraySum1 algorithm (slide 5) to obtain total sum

Complexity analysis

• Parallel time for pre-pass in lines 1-7 = O(N/P), where N = A.length

• Parallel time for ArraySum1 algorithm = O(log P)

• Total parallel time, T(N,P) = O(N/P + log P)

11

COMP 322, Spring 2012 (V.Sarkar)

ArraySum: Ideal Parallel Time as function of P

• Total parallel time, T(N,P) = N/P + log2(min(P,N)), depends on
• Input size, N
• Number of processors, P

0"

500"

1000"

1500"

2000"

2500"

1" 2" 4" 8" 16" 32" 64" 128" 256" 512" 1024"

Parallel"Time"(N=1024)" Parallel"Time"(N=2048)"

P

T(N,P)

12

COMP 322, Spring 2012 (V.Sarkar)

Async-Finish Exception Semantics
(Lecture 5)

• Exceptions thrown by multiple async’s are accumulated into a
“MultipleExceptions” collection at their Immediately Enclosing Finish

1. try {

2. finish for (int i = 0; i < size; i++)

3. async {

4. // Add explicit ArrayIndexOutOfBoundsException with X[-1]

5. X[2*i*step] += X[(2*i+1)*step] + X[-1];

6. } // finish-for-async

7. } // try

8. catch (Throwable t) {

9. if (t instanceof hj.lang.MultipleExceptions)

10. ... // Process the collection, t.exceptions

11. else // single exception

12. ... // Process t

13. }

13

COMP 322, Spring 2012 (V.Sarkar)

Formal Definition of Data Races
	
 Formally, a data race occurs on location L in a program

execution with computation graph CG if there exist steps
(nodes) S1 and S2 in CG such that:
1. S1 does not depend on S2 and S2 does not depend on S1 i.e.,

there is no path of dependence edges from S1 to S2 or from S2
to S1 in CG, and

2. Both S1 and S2 read or write L, and at least one of the accesses
is a write.

	
 Data races are challenging because of
• Nondeterminism: different executions of the parallel program with

the same input may result in different outputs.

• Debugging and Testing: it is usually impossible to guarantee that all
possible orderings of the accesses to a location will be encountered
during program debugging and testing.

14

COMP 322, Spring 2012 (V.Sarkar)

Data Race Example
// Incorrect parallel version
for (p = first; p != null; p = p.next)
 async p.x = p.y + p.z;

for (p = first; p != null; p = p.next)
 sum += p.x;

• Race between Honda motorcycle
(writing p.x) and Minuteman bicycle
(reading p.x)

• Who will get there first? Image source: http://users.rcn.com/hwbingham/
lexbike/bike.gif

Image source: http://www.motorcycle.com/images/
content/Review/6crf1022.jpg

15

COMP 322, Spring 2012 (V.Sarkar)

java.util.concurrent.atomic.AtomicInteger
(Lecture 6)

• Constructors
— new AtomicInteger()

– Creates a new AtomicInteger with initial value 0
— new AtomicInteger(int initialValue)

– Creates a new AtomicInteger with the given initial value

• Selected methods
— int addAndGet(int delta)

– Atomically adds delta to the current value of the atomic
variable, and returns the new value

— int getAndAdd(int delta)

– Atomically returns the current value of the atomic variable, and
adds delta to the current value

• Similar interfaces available for LongInteger
—No worry about lower/upper half issues when using a LongInteger

atomic variable

16

COMP 322, Spring 2012 (V.Sarkar)

Work-Sharing Pattern using AtomicInteger
1. import java.util.concurrent.atomic.AtomicInteger;

2. . . .

3. String[] X = ... ; int numTasks = ...;

4. AtomicInteger a = new AtomicInteger();

5. . . .

6. finish for (int i=0; i<numTasks; i++)

7. async {

8. do {

9. int j = a.getAndAdd(1);

10. // can also use a.getAndIncrement()

11. if (j >= X.length) break;

12. . . . // Process X[j]

13. } while (true);

14. } // finish-for-async

17

COMP 322, Spring 2012 (V.Sarkar)

Solution Counting Pattern using AtomicInteger
1. import java.util.concurrent.atomic.AtomicInteger;

2. . . .

3. AtomicInteger count = new AtomicInteger();

4. finish nqueens_kernel(new int[0], 0);

5. . . .

6. void nqueens_kernel(int [] a, int depth) {

7. if (size == depth) count.addAndGet(1);

8. else

9. /* try each possible position for queen at depth */

10. for (int i = 0; i < size; i++) async {

11. /* allocate a temporary array and copy array a into it */

12. int [] b = new int [depth+1];

13. System.arraycopy(a, 0, b, 0, depth);

14. b[depth] = i;

15. if (ok(depth+1,b)) nqueens_kernel(b, depth+1);

16. } // for-async

17. } // nqueens_kernel()

18

COMP 322, Spring 2012 (V.Sarkar)

HJ Futures: Tasks with Return Values
(Lecture 7)

async<T> { <Stmt-Block> }

• Creates a new child task that
executes Stmt-Block, which
must terminate with a return
statement returning a value of
type T

• Async expression returns a
reference to a container of
type future<T>

• Values of type future<T> can
only be assigned to final
variables

Expr.get()

§ Evaluates Expr, and blocks if
Expr’s value is unavailable

§ Expr must be of type future<T>
§ Return value from Expr.get()

will then be T
§ Unlike finish which waits for all

tasks in the finish scope, a
get() operation only waits for
the specified async expression

19

1. // Parent Task T1 (main program)

2. // Compute sum1 (lower half) and sum2 (upper half) in parallel

3. final future<int> sum1 = async<int> { // Future Task T2

4. int sum = 0;

5. for(int i=0 ; i < X.length/2 ; i++) sum += X[i];

6. return sum;

7. }; //NOTE: semicolon needed to terminate assignment to sum1

8. final future<int> sum2 = async<int> { // Future Task T3

9. int sum = 0;

10. for(int i=X.length/2 ; i < X.length ; i++) sum += X[i];

11. return sum;

12. }; //NOTE: semicolon needed to terminate assignment to sum2

13. //Task T1 waits for Tasks T2 and T3 to complete

14. int total = sum1.get() + sum2.get();

COMP 322, Spring 2012 (V.Sarkar)

Example: Two-way Parallel Array Sum
using Future Tasks

Why are these semicolons needed?

20

COMP 322, Spring 2012 (V.Sarkar)

Comparison of Future Task and Regular
Async Versions of Two-Way Array Sum

• Future task version initializes two references to
future objects, sum1 and sum2, and both are
declared as final

• No finish construct needed in this example
—Instead parent task waits for child tasks by performing

sum1.get() and sum2.get()

• Guaranteed absence of race conditions in Future Task
example
—No race on sum because it is a local variable in tasks T2 and

T3
—No race on future variables, sum1 and sum2, because of

blocking-read semantics

21

COMP 322, Spring 2012 (V.Sarkar)

Extending HJ Futures for Macro-Dataflow (Lecture 8):
Data-Driven Futures (DDFs) and Data-Driven Tasks (DDTs)
ddfA = new DataDrivenFuture();

• Allocate an instance of a data-driven-future object (container)

async await(ddfA, ddfB, …) <Stmt>

• Create a new data-driven-task to start executing Stmt after all of
ddfA, ddfB, … become available (i.e., after task becomes “enabled”)

ddfA.put(V) ;

• Store object V in ddfA, thereby making ddfA available

• Single-assignment rule: at most one put is permitted on a given DDF

ddfA.get()

• Return value stored in ddfA

• Can only be performed by async’s that contain ddfA in their await
clause (hence no blocking is necessary for DDF gets)

22

COMP 322, Spring 2012 (V.Sarkar)

Example Habanero Java code fragment
with Data-Driven Futures

1. DataDrivenFuture left = new DataDrivenFuture();

2. DataDrivenFuture right = new DataDrivenFuture();

3. finish {

4. async await(left) leftReader(left); // Task3

5. async await(right) rightReader(right); // Task5

6. async await(left,right)

7. bothReader(left,right); // Task4

8. async left.put(leftWriter()); // Task1

9. async right.put(rightWriter());// Task2

10. }

• await clauses capture data flow relationships

23

COMP 322, Spring 2012 (V.Sarkar)

Differences between Futures and DDFs/DDTs
• Consumer blocks on get() for each future that it reads, whereas

async-await does not start execution till all DDFs are available

• Producer task can only write to a single future object, where as
a DDF task can write to multiple DDF objects

• The choice of which future object to write to is tied to a future
task at creation time, where as the choice of output DDF can be
deferred to any point with a DDF task

• Future tasks cannot deadlock, but it is possible for a DDF task
to never be enabled, if one of its input DDFs never becomes
available. This can be viewed as a special case of deadlock.
—This deadlock case can be resolved by ensuring that each finish

construct moves past the end-finish when all enabled async tasks in
its scope have terminated, thereby ignoring any remaining non-
enabled async tasks.

24

COMP 322, Spring 2012 (V.Sarkar)

seq clause in HJ async statement
(Lecture 9)

1. void fib (int n) {

2. if (n<2) {

3. . . .

4. } else {

5. finish {

6. async seq(n <= THRESHOLD) fib(n-1);

7. async seq(n <= THRESHOLD) fib(n-2);

8. }

9. } // if-else

10.} // fib()

• seq clause specifies condition under which async should be executed sequentially

25

COMP 322, Spring 2012 (V.Sarkar)

hj.lang.point, an index type for multi-
dimensional loops

• A point is an element of an n-dimensional Cartesian space (n>=1)
with integer-valued coordinates e.g., [5], [1, 2], …
— Dimensions of a point are numbered from 0 to n-1
— n is also referred to as the rank of the point

• A point variable can hold values of different ranks e.g.,
— point p; p = [1]; … p = [2,3]; …

• The following operations are defined on point-valued expression p1
— p1.rank --- returns rank of point p1
— p1.get(i) --- returns element i of point p1

– Returns element (i mod p1.rank) if i < 0 or i >= p1.rank

— p1.lt(p2), p1.le(p2), p1.gt(p2), p1.ge(p2)
– Returns true iff p1 is lexicographically <, <=, >, or >= p2
– Only defined when p1.rank and p1.rank are equal

26

COMP 322, Spring 2012 (V.Sarkar)

hj.lang.region, a rectangular iteration
space for multi-dimensional loops

A region is the set of points contained in a rectangular subspace

A region variable can hold values of different ranks e.g.,
– region R; R = [0:10]; … R = [-100:100, -100:100]; … R = [0:-1]; …

Operations
– R.rank ::= # dimensions in region;

– R.size() ::= # points in region
– R.contains(P) ::= predicate if region R contains point P
– R.contains(S) ::= predicate if region R contains region S
– R.equal(S) ::= true if region R equals region S
– R.rank(i) ::= projection of region R on dimension i (a one-dimensional region)
– R.rank(i).low() ::= lower bound of ith dimension of region R
– R.rank(i).high() ::= upper bound of ith dimension of region R
– R.ordinal(P) ::= ordinal value of point P in region R
– R.coord(N) ::= point in region R with ordinal value = N

27

COMP 322, Spring 2012 (V.Sarkar)

Summary of forasync statement
forasync (point [i1] : [lo1:hi1]) <body>

forasync (point [i1,i2] : [lo1:hi1,lo2:hi2]) <body>

forasync (point [i1,i2,i3] : [lo1:hi1,lo2:hi2,lo3:hi3]) <body>

. . .

• forasync statement creates multiple async child tasks, one per
iteration of the forasync
—all child tasks can execute <body> in parallel
—child tasks are distinguished by index “points” ([i1], [i1,i2], …)

• <body> can read local variables from parent (copy-in semantics
like async)

• forasync needs a finish for termination, just like regular async
tasks
—Later, we will learn about replacing “finish forasync” by “forall”

28

COMP 322, Spring 2012 (V.Sarkar)

Pointwise sequential for loop

• HJ extends Java’s for loop to support sequential iteration over
points in region R in canonical lexicographic order
— for (point p : R) . . .

• Standard point operations can be used to extract individual index
values from point p
— for (point p : R) { int i = p.get(0); int j =
p.get(1); . . . }

• Or an “exploded” syntax is commonly used instead of explicitly
declaring a point variable
— for (point [i,j] : R) { . . . }

• The exploded syntax declares the constituent variables (i, j, …)
as local int variables in the scope of the for loop body

29

COMP 322, Spring 2012 (V.Sarkar)

Example: HJ code for One-Dimensional Iterative Averaging
with chunked for-finish-forasync-for (Lecture 10)

1. for (point [iter] : [0:iterations-1]) {

2. // Compute MyNew as function of input array MyVal

3. int Cj = ...; // Set to desired number of chunks

4. finish forasync (point [jj]:[0:Cj-1]) {

5. for (point [j]:getChunk([1:n],[Cj],[jj]))

6. myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

7. } // finish forasync

8. temp=myVal; myVal=myNew; myNew=temp;// Swap myVal & myNew;

9. // myNew becomes input array for next iteration

10.} // for

• How many tasks does this chunked version create?

30

COMP 322, Spring 2012 (V.Sarkar)

Parallel Prefix Sum: Upward Sweep
1. Receive values from children
2. Store left value in box (will contribute to prefix sum for right subtree in

downward sweep)
3. Send left+right value to parent

15

2

Input array, A:

31

COMP 322, Spring 2012 (V.Sarkar)

Parallel Prefix Sum: Downward Sweep
1. Receive value from parent (root receives 0)
2. Send parent’s value to left child (prefix sum for elements to left of left

child’s subtree)
3. Send parent+box value to right child (prefix sum for elements to left of

right child’s subtree)

Add A[i] to get final prefix sum

= Prefix sum
including A[i]

+ A[i]

Prefix sum
excluding A[i]

0

32

COMP 322, Spring 2012 (V.Sarkar)

Two Opportunities in
 Parallelizing Quicksort (Lecture 11)

procedure Quicksort(S) {

 if S contains at most one element then return S

 else {

 choose an element a randomly from S;

 // Opportunity: Parallelize partitioning

 let S1, S2 and S3 be the sequences of elements in S less

 than, equal to, and greater than a, respectively;

 // Opportunity: Parallelize recursive calls

 return (Quicksort(S1) followed by S2 followed by

 Quicksort(S3))

 } // else

} // procedure

33

COMP 322, Spring 2012 (V.Sarkar)

Approach 1: sequential partition,
parallel calls

WORK(n) = O(n log n)

CPL(n) = O(n) + O(n/2) + O(n/4) + … = O(n)

partition
(size = n)

partition
(size=n/2)

partition
(size=n/2)

part
(n/4)

part
(n/4)

part
(n/4)

part
(n/4)

O(log n) depth of calls to partition()

34

COMP 322, Spring 2012 (V.Sarkar)

Approach 2: Parallel partition,
sequential calls

WORK(n) = O(n log n)

CPL(n) = log(n) + 2 log(n/2) + 4 log(n/4) + … = O(n)

partition
(CPL = log n)

partition
(log n/2)

part
(log n/4)

O(n) depth of partition() steps

part
(log n/4)

… …

partition
(log n/2)

part
(log n/4)

part
(log n/4)

… …

35

COMP 322, Spring 2012 (V.Sarkar)

Approach 3: parallel partition, parallel
calls

WORK(n) = O(n log n)

CPL(n) = O(log n) + O(log n/2) + O(log n/4) + … = O(log2 n)

partition
(CPL = log n)

partition
(log n/2)

partition
(log n/2)

part
(log n/4)

part
(log n/4)

part
(log n/4)

part
(log n/4)

O(log n) depth of calls to partition()

36

COMP 322, Spring 2012 (V.Sarkar)

Finish Accumulators in HJ (Lecture 12)
• Creation

 accumulator ac = accumulator.factory.accumulator(operator, type);
– operator can be Operator.SUM, Operator.PROD, Operator.MIN, or

Operator.MAX
– type can be int.class or double.class
– extensions to support generic types, and user-defined operators and types

are in progress

• Accumulation

 ac.put(data);
– data must be of type java.lang.Number, int, or double

• Retrieval

 Number n = ac.get();
– get() can only be performed outside finish scope that ac is registered with
– get() is nonblocking because finish provides the necessary synchronization
– result from get() will be deterministic if HJ program does not use atomic or

isolated constructs and is data-race-free

37

COMP 322, Spring 2012 (V.Sarkar)

Solution Counting Pattern using Finish
Accumulators (NQueens revisited)

1. static accumulator a;

2. . . .

3. a = accumulator.factory.accumulator(SUM, int.class);

4. finish(a) nqueens_kernel(new int[0], 0);

5. System.out.println(“No. of solutions = “ + a.get().intValue())

6. . . .

7. void nqueens_kernel(int [] a, int depth) {

8. if (size == depth) a.put(1);

9. else

10. /* try each possible position for queen at depth */

11. for (int i = 0; i < size; i++) async {

12. /* allocate a temporary array and copy array a into it */

13. int [] b = new int [depth+1];

14. System.arraycopy(a, 0, b, 0, depth);

15. b[depth] = i;

16. if (ok(depth+1,b)) nqueens_kernel(b, depth+1);

17. } // for-async

18. } // nqueens_kernel()

38

COMP 322, Spring 2012 (V.Sarkar)

Atomic Variables vs. Accumulators
Atomic variables

• Pros:
— simple construct that can be used anywhere in HJ code
— supports nondeterminism e.g., work-sharing example in Lecture 6

• Cons:
— can be a sequential bottleneck with large number of simultaneous parallel accesses
— supports nondeterminism

Finish accumulators

• Pros:
— integration with finish structure guarantees determinism and reduces errors
— supports more reduction operations (max, min, product) than AtomicInteger
— lazy implementation with work-stealing schedulers is more scalable than

AtomicInteger operations

• Con:
— does not support nondeterminism

39

AtomicInteger rank = new AtomicInteger();

forall (point[i] : [0:m-1]) {

 int r = rank.getAndIncrement();

 System.out.println(“Hello from task ranked “ + r);

 next; // Acts as barrier between phases 0 and 1

 System.out.println(“Goodbye from task ranked “ + r);

}

• next è each forall iteration suspends at next until all iterations arrive
(complete previous phase), after which the phase can be advanced
— If a forall iteration terminates before executing “next”, then the other

iterations do not wait for it
— Scope of synchronization is the closest enclosing forall statement
— Special case of “phaser” construct

COMP 322, Spring 2012 (V.Sarkar)

HJ’s forall statement = finish + forasync + next
(Lecture 16: Summary of Barriers and Phasers)

Phase 0

Phase 1

40

COMP 322, Spring 2012 (V.Sarkar)

Point-to-point synchronization

iter = i

iter = i+1

Barrier synchronization

Barrier vs Point-to-Point Synchronization for
One-Dimensional Iterative Averaging Example

iter = i

iter = i+1

41

COMP 322, Spring 2012 (V.Sarkar)

• Phaser allocation
— phaser ph = new phaser(mode);

– Phaser ph is allocated with registration mode
– Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)

• Registration Modes
— phaserMode.SIG, phaserMode.WAIT, phaserMode.SIG_WAIT, phaserMode.SIG_WAIT_SINGLE
— NOTE: phaser WAIT has no relationship to Java wait/notify

• Phaser registration
— async phased (ph1<mode1>, ph2<mode2>, …) <stmt>

– Spawned task is registered with ph1 in mode1, ph2 in mode2, …

– Child task’s capabilities must be subset of parent’s
– async phased <stmt> propagates all of parent’s phaser registrations to child

• Synchronization
— next;

– Advance each phaser that current task is registered on to its next phase
– Semantics depends on registration mode

Summary of Phaser Construct

42

COMP 322, Spring 2012 (V.Sarkar)

Left-Right Neighbor Synchronization Example

COMP 322, Spring 2011 (V.Sarkar)!18

Barrier & P-2-P Sync for 1-D
Averaging!

doPhase1(i)

doPhase2(i)

 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

1. finish {
2. phaser[] ph = new phaser[m+2];
3. for(point [i]:[0:m+1]) ph[i] = new phaser();
4. for(point [i] : [1:m])
5. async phased(ph[i]<SIG>, ph[i-1]<WAIT>, ph[i+1]<WAIT>) {
6. doPhase1(i);
7. next; // Signal ph[i] & wait on ph[i-1], ph[i+1]
8. doPhase2(i);
9. }
10.}

43

COMP 322, Spring 2012 (V.Sarkar)

Announcements
• Homework 3 due by 11:55pm on Friday, Feb 24th

— Performance results for parts 2 and 3 of assignment must be obtained on
Sugar (see Section 4)

• Exam 1 is a take-home exam
— Maximum duration = 2 hours
— Closed-book, closed-notes, closed-computer
— Pick up exam from Amanda Nokleby's office (Duncan Hall 3137) any time

starting 9am on Thursday, Feb 23rd
— Return exam to Amanda’s office by 4pm on Friday, Feb 24th
— Written exam --- no penalty for minor syntactic errors in program text, so

long as the meaning of the program is unambiguous.
— If you believe there is any ambiguity or inconsistency in a question, you

should state the ambiguity or inconsistency that you see, and any assumptions
that you make to resolve it.

— Scope of exam includes Lectures 1-16
– Lectures 17 & 18 (Places) will be in scope for Exam 2

44

