
COMP 322: Fundamentals of 
Parallel Programming

Lecture 9: Abstract vs Real Performance, 
seq clause, forasync loops

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322                             Lecture 9              30 January 2012



COMP 322, Spring 2012 (V.Sarkar)

Goals for Today’s Lecture
• Abstract vs. Real performance

• seq clause in async statements

• forasync loops and “chunking”

2



COMP 322, Spring 2012 (V.Sarkar)

HJ Compilation and Execution 
Environment

Foo.hj

HJ compiler HJ compiler translates Foo.hj to Foo.class, and inserts
calls to HJ runtime as needed

Foo.class

HJ source program --- must contain a class named Foo 
with a public static void main(String[] args) method

HJ Runtime Environment = 
JRE + HJ libraries + 

HJ Multithreaded Runtime

Data Race Detection Output, HJ Computation Graph,
HJ Abstract Performance Metrics
(all enabled by appropriate options)

HJ Program Output

hjc Foo.hj

hj –places m:n Foo

HJ runtime allocates m*n worker threads across m “places” 
(default values: m = 1 place, n = # hardware cores/threads)

DrHJ IDE (optional)

3



COMP 322, Spring 2012 (V.Sarkar)

Scheduling HJ tasks on processors in a 
parallel machine

• HJ runtime creates a small number of worker threads, typically one per 
core

• Workers push async’s and/or “continuations” into a logical work queue

• when an async operation is performed

• when an end-finish operation is reached

• Workers pull task/continuation work item when they are idle

4



COMP 322, Spring 2012 (V.Sarkar)

Continuations
• A continuation is one of two kinds of program points

—The point in the parent task immediately following an async
—The point immediately following an end-finish or a future get()

• Continuations are also referred to as task-switching points
—Program points at which a worker may switch execution between 

different tasks
1.finish { // F1

2.  async A1;

3.  finish { // F2

4.    async A3;

5.    async A4;

6.  }

7.  S5;

8.}

Continuations

5



COMP 322, Spring 2012 (V.Sarkar)

Work-Sharing vs. Work-Stealing 
Scheduling Paradigms

• Work-Sharing
— Busy worker eagerly distributes new work
— Easy implementation with global task pool
— Access to the global pool needs to be 

synchronized: scalability bottleneck

• Work-Stealing
— Busy worker incurs little overhead to create work
— Idle worker “steals” the tasks from busy workers
— Distributed task pools lead to improved scalability
— When task Τa spawns Τb, the worker can

– stay on Τa, making Τb available for execution by 
another processor (help-first policy, better 
suited for loop parallelism), or

– start working on Τb  first (work-first policy, 
better suited for recursive parallelism)

w1 w2 w3 w4

push
task

pull
task

w1 w2 w3

work-sharing

work-stealing

steal task

66



COMP 322, Spring 2012 (V.Sarkar)

Context Switch
• Context Switch occurs whenever a processor

—Deviates execution from sequential execution by not following 
continue edges 

• Two examples of context switches:
Ø Case 1:   …..v12 v13 v14 à context switch à v18 …..
Ø Case 2:   v1 v2 v3 v6 v9  à context switch à v4 v5 ….

7
7



COMP 322, Spring 2012 (V.Sarkar)

Context Switch (cond.)

• Why are context switches expensive?
—Execution context needs special handling by worker 
e.g., save/restore of local variables

—Cache may be “cold”

• When does a context switch occur?
—In work-first policy, every steal will trigger a 
context switch of the victim

—In help-first policy, every task is executed after 
a context switch

8
8



COMP 322, Spring 2012 (V.Sarkar)

Scheduling Policies Currently Available in HJ
DrHJ compiler 
option

Command-line 
option

Functional 
limitations

Performance 
limitations

work-sharing
(default option)

hjc -rt s
(default option)

None - supports full 
HJ language

Creates additional 
worker threads when 
a task blocks

work-sharing 
(Fork-Join)

hj -fj
(Same compiler option 
as work-sharing)

None - supports full 
HJ language

May perform better 
than work-sharing for 
recursive parallelism

work-stealing
(Help-First)

hjc -rt h Only supports async, 
finish, forasync, 
atomic vars, isolated

Lower overheads, 
better for loop 
parallelism

work-stealing
(Work-First)

hjc -rt w Only supports async, 
finish, forasync, 
atomic vars, isolated

Lower overheads, 
better for recursive 
parallelism

work-stealing
(Adaptive)

hjc -rt a Only supports async, 
finish, forasync, 
atomic vars, isolated

Lower overheads, 
automatically chooses 
between help-first and 
work-first policies

9



COMP 322, Spring 2012 (V.Sarkar)

Iterative Fork-Join Microbenchmark

• k = number of tasks

• ts(k) = sequential time

• t1
wf(k) = 1-worker time for work-stealing with work-first 

policy

• t1
hf(k) = 1-worker time for work-stealing with help-first 

policy

• t1
ws(k) = 1-worker time for work-sharing

• Java-thread(k) = create a Java thread for each async

finish { //startFinish
     for (int i=1; i<k; i++) 
           async Ti;  // task i
     T0; //task 0
}

10
10



COMP 322, Spring 2012 (V.Sarkar)

 Fork-Join Microbenchmark Measurements (execution 
time in micro-seconds)

Help-First may perform better than Work-First on this 
microbenchmark if the number of workers is increased to > 1

11



COMP 322, Spring 2012 (V.Sarkar)

Goals for Today’s Lecture
• Abstract vs. Real performance

• seq clause in async statements

• forasync loops and “chunking”

12



COMP 322, Spring 2012 (V.Sarkar)

Adding a Threshold Test for Efficiency
1.void fib (int n) {

2.  if (n<2) {

3.    . . .

4.  } else {

5.    finish {

6.      async fib(n-1);

7.      async fib(n-2);

8.    } // finish

9.  } // if-else

10.} // fib()

1.void fib (int n) {

2.  if (n<2) {

3.    . . .

4.  } else if ( n > THRESHOLD) {

5.      // PARALLEL VERSION

6.      finish {

7.        async fib(n-1);

8.        async fib(n-2);

9.      } // finish

10.  } else { // SEQUENTIAL VERSION

11.      fib(n-1); fib(n-2);

12.  } // if-else-else

13.} // fib()

13



COMP 322, Spring 2012 (V.Sarkar)

seq clause in HJ async statement

1. void fib (int n) {

2.    if (n<2) {

3.        . . .

4.    } else { 

5.         finish {

6.             async seq(n <= THRESHOLD) fib(n-1);

7.             async seq(n <= THRESHOLD) fib(n-2);

8.         }

9.     } // if-else

10.} // fib()

• seq clause specifies condition under which async should be executed sequentially

14



COMP 322, Spring 2012 (V.Sarkar)

Example of seq clause: nqueens.hj 
1.  void nqueens_kernel(int [] a, int depth) {
2.     if (size == depth) {
3.       total_count.addAndGet(1); // Add to solution count
4.       return;
5.     }
6.     /* try each possible position for queen at depth */
7.     for (int i =  0; i < size; i++) {
8.       async seq(depth >= cutoff_value) {
9.         /* allocate a temporary array and copy a[] into it */
10.        int [] b = new int [depth+1];
11.        System.arraycopy(a, 0, b, 0, depth);
12.        b[depth] = i;
13.        if (ok( (depth +  1), b))
14.          nqueens_kernel(b, depth+1);
15.      }
16.    }
17.  }

15



COMP 322, Spring 2012 (V.Sarkar)

Goals for Today’s Lecture
• Abstract vs. Real performance

• seq clause in async statements

• forasync loops and “chunking”

16



COMP 322, Spring 2012 (V.Sarkar)

HJ’s pointwise for & forasync statements
Goal: capture common for-async pattern in a single construct for 

multidimensional loops e.g., replace
finish {

  for (int I = 0 ; I < N ; I++)

    for (int J = 0 ; J < N ; J++) 

      async

        for (int K = 0 ; K < N ; K++)

          C[I][J] += A[I][K] * B[K][J];

}

by
finish forasync (point [I,J] : [0:N-1,0:N-1])

  for (point[K] : [0:N-1])

    C[I][J] += A[I][K] * B[K][J];

17



COMP 322, Spring 2012 (V.Sarkar)

Observations
• Combination of for-async is replaced by a single keyword, 

forasync

• Multiple loops can be collapsed into a single forasync, with a 
multi-dimensional iteration space.

• Iteration variable for a forasync is a point (integer tuple), such 
as [I,J]

• Loop bounds can be specified as a rectangular region (dimension 
ranges) such as [0:N-1,0:N-1]

• HJ also extends the sequential for statement so as to iterate 
sequentially over a rectangular region
—Simplifies conversion between for and forasync

18



COMP 322, Spring 2012 (V.Sarkar)

hj.lang.point, an index type for multi-
dimensional loops

• A point is an element of an n-dimensional Cartesian space (n>=1) 
with integer-valued coordinates e.g., [5], [1, 2], … 
— Dimensions of a point are numbered from 0 to n-1
— n is also referred to as the rank of the point

• A point variable can hold values of different ranks e.g., 
— point p; p = [1]; … p = [2,3]; …

• The following operations are defined on point-valued expression p1
— p1.rank --- returns rank of point p1
— p1.get(i) --- returns element i of point p1

– Returns element (i mod p1.rank) if i < 0 or  i >= p1.rank

— p1.lt(p2), p1.le(p2), p1.gt(p2), p1.ge(p2)
– Returns true iff p1 is lexicographically <, <=, >, or >= p2 
– Only defined when p1.rank and p1.rank are equal

19



COMP 322, Spring 2012 (V.Sarkar)

Example
public class TutPoint {

    public static void main(String[] args) {

        point p1 = [1,2,3,4,5];

        point p2 = [1,2];

        point p3 = [2,1];

        System.out.println("p1 = " + p1 + " ; p1.rank = " + p1.rank 

                           + " ; p1.get(2) = " + p1.get(2));

        System.out.println("p2 = " + p2 + " ; p3 = " + p3

                           + " ; p2.lt(p3) = " + p2.lt(p3));

    } // main()

} // TutPoint

Console output:

p1 = [1,2,3,4,5] ; p1.rank = 5 ; p1.get(2) = 3
p2 = [1,2] ; p3 = [2,1] ; p2.lt(p3) = true

20



COMP 322, Spring 2012 (V.Sarkar)

hj.lang.region, a rectangular iteration 
space for multi-dimensional loops

A region is the set of points contained in a rectangular subspace

A region variable can hold values of different ranks e.g., 
– region R; R = [0:10]; … R = [-100:100, -100:100]; … R = [0:-1]; …

Operations
– R.rank ::= # dimensions in region; 

– R.size() ::= # points in region
– R.contains(P) ::= predicate if region R contains point P
– R.contains(S) ::= predicate if region R contains region S
– R.equal(S) ::= true if region R equals region S
– R.rank(i) ::= projection of region R on dimension i (a one-dimensional region)
– R.rank(i).low() ::= lower bound of ith dimension of region R
– R.rank(i).high() ::= upper bound of ith dimension of region R
– R.ordinal(P) ::= ordinal value of point P in region R
– R.coord(N) ::= point in region R with ordinal value = N

21



COMP 322, Spring 2012 (V.Sarkar)

Summary of forasync statement
forasync (point [i1] : [lo1:hi1]) <body> 

forasync (point [i1,i2] : [lo1:hi1,lo2:hi2]) <body> 

forasync (point [i1,i2,i3] : [lo1:hi1,lo2:hi2,lo3:hi3]) <body> 

. . .

• forasync statement creates multiple async child tasks, one per 
iteration of the forasync
—all child tasks can execute <body> in parallel
—child tasks are distinguished by index “points” ([i1], [i1,i2], …)

• <body> can read local variables from parent (copy-in semantics 
like async)

• forasync needs a finish for termination, just like regular async 
tasks
—Later, we will learn about replacing “finish forasync” by “forall”

22



COMP 322, Spring 2012 (V.Sarkar)

Pointwise sequential for loop

• HJ extends Java’s for loop to support sequential iteration over 
points in region R in canonical lexicographic order
— for ( point p : R ) . . .

• Standard point operations can be used to extract individual index 
values from point p
— for ( point p : R ) { int i = p.get(0); int j = 
p.get(1); . . . }

• Or an “exploded” syntax is commonly used instead of explicitly 
declaring a point variable
— for ( point [i,j] : R ) { . . . }

• The exploded syntax declares the constituent variables (i, j, …) 
as local int variables in the scope of the for loop body

23



COMP 322, Spring 2012 (V.Sarkar)

forasync examples: updates to a 
two-dimensional Java array

// Case 1: loops i,j can run in parallel 

forasync (point[i,j] : [0:m-1,0:n-1]) A[i][j] = F(A[i][j]) ;

// Case 2: only loop i can run in parallel 

forasync (point[i] : [1:m-1]) 

  for (point[j] : [1:n-1]) // Equivalent to “for (j=1;j<n;j++)”

     A[i][j] = F(A[i][j-1]) ;

// Case 3: only loop j can run in parallel 

for (point[i] : [1:m-1]) // Equivalent to “for (i=1;i<m;j++)”

  finish forasync (point[j] : [1:n-1])

     A[i][j] = F(A[i-1][j]) ;

24



COMP 322, Spring 2012 (V.Sarkar)

One-Dimensional Iterative Averaging Example

• Initialize a one-dimensional array of (n+2) double’s with boundary 
conditions, myVal[0] = 0 and myVal[n+1] = 1. 

• In each iteration, each interior element myVal[i] in 1..n is replaced by 
the average of its left and right neighbors.
— Two separate arrays are used in each iteration, one for old values and the 

other for the new values

• After a sufficient number of iterations, we expect each element of the 
array to converge to myVal[i] = i/(n+1)
— In this case, myVal[i] = (myVal[i-1]+myVal[i+1])/2, for all i in 1..n 

Illustration of an intermediate step for n = 8 (source: Figure 6.19 in Lin-Snyder book)

25



COMP 322, Spring 2012 (V.Sarkar)

HJ code for One-Dimensional Iterative Averaging 
using nested for-finish-forasync structure 

1. for (point [iter] : [0:iterations-1]) {

2.   // Compute MyNew as function of input array MyVal

3.   finish forasync (point [j] : [1:n]) { // Create n tasks

4.      myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

5.   } // finish forasync

6.   temp=myVal; myVal=myNew; myNew=temp;// Swap myVal & myNew; 

7.   // myNew becomes input array for next iteration

8. } // for

• How many tasks does this version create?

• This is an idealized version with no “chunking” of forasync iterations

26



COMP 322, Spring 2012 (V.Sarkar)

Chunking of forasync loops for 
efficiency

// Original forasync loop iterates over region R

forasync (point [i,j] : R) <body>

// Chunked forasync loop iterates over Ci*Cj chunks with 

// point [ii,jj] in region chunks(R,[Ci,Cj]).

// Forasync body contains inner for loop iterating over

// myChunk(R,[ii,jj])

forasync (point [ii,jj] : chunks(R,[Ci,Cj]))

  for (point [i,j] : myChunk(R,[ii,jj]))

  

27



COMP 322, Spring 2012 (V.Sarkar)

Example: HJ code for One-Dimensional Iterative 
Averaging with chunked for-finish-forasync-for 

1. for (point [iter] : [0:iterations-1]) {

2.   // Compute MyNew as function of input array MyVal

3.   int Cj = ...; // Set to desired number of chunks

4.   int iters = (n+Cj-1)/Cj; // Max iterations per chunk

5.   finish forasync (point [jj]:[1:Cj]) {

6.      for (point [j]:[1+(jj-1)*iters : Math.min(jj*iters,n)])

7.        myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

8.   } // finish forasync

9.   temp=myVal; myVal=myNew; myNew=temp;// Swap myVal & myNew; 

10.  // myNew becomes input array for next iteration

11.} // for

• How many tasks does this chunked version create?

28


