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Goals for Today’s Lecture
• Abstract vs. Real performance

• seq clause in async statements

• forasync loops and “chunking”
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HJ Compilation and Execution 
Environment

Foo.hj

HJ compiler HJ compiler translates Foo.hj to Foo.class, and inserts
calls to HJ runtime as needed

Foo.class

HJ source program --- must contain a class named Foo 
with a public static void main(String[] args) method

HJ Runtime Environment = 
JRE + HJ libraries + 

HJ Multithreaded Runtime

Data Race Detection Output, HJ Computation Graph,
HJ Abstract Performance Metrics
(all enabled by appropriate options)

HJ Program Output

hjc Foo.hj

hj –places m:n Foo

HJ runtime allocates m*n worker threads across m “places” 
(default values: m = 1 place, n = # hardware cores/threads)

DrHJ IDE (optional)
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Scheduling HJ tasks on processors in a 
parallel machine

• HJ runtime creates a small number of worker threads, typically one per 
core

• Workers push async’s and/or “continuations” into a logical work queue

• when an async operation is performed

• when an end-finish operation is reached

• Workers pull task/continuation work item when they are idle
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Continuations
• A continuation is one of two kinds of program points

—The point in the parent task immediately following an async
—The point immediately following an end-finish or a future get()

• Continuations are also referred to as task-switching points
—Program points at which a worker may switch execution between 

different tasks
1.finish { // F1

2.  async A1;

3.  finish { // F2

4.    async A3;

5.    async A4;

6.  }

7.  S5;

8.}

Continuations
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Work-Sharing vs. Work-Stealing 
Scheduling Paradigms

• Work-Sharing
— Busy worker eagerly distributes new work
— Easy implementation with global task pool
— Access to the global pool needs to be 

synchronized: scalability bottleneck

• Work-Stealing
— Busy worker incurs little overhead to create work
— Idle worker “steals” the tasks from busy workers
— Distributed task pools lead to improved scalability
— When task Τa spawns Τb, the worker can

– stay on Τa, making Τb available for execution by 
another processor (help-first policy, better 
suited for loop parallelism), or

– start working on Τb  first (work-first policy, 
better suited for recursive parallelism)

w1 w2 w3 w4

push
task

pull
task

w1 w2 w3

work-sharing

work-stealing

steal task
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Context Switch
• Context Switch occurs whenever a processor

—Deviates execution from sequential execution by not following 
continue edges 

• Two examples of context switches:
Ø Case 1:   …..v12 v13 v14 à context switch à v18 …..
Ø Case 2:   v1 v2 v3 v6 v9  à context switch à v4 v5 ….
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Context Switch (cond.)

• Why are context switches expensive?
—Execution context needs special handling by worker 
e.g., save/restore of local variables

—Cache may be “cold”

• When does a context switch occur?
—In work-first policy, every steal will trigger a 
context switch of the victim

—In help-first policy, every task is executed after 
a context switch
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Scheduling Policies Currently Available in HJ
DrHJ compiler 
option

Command-line 
option

Functional 
limitations

Performance 
limitations

work-sharing
(default option)

hjc -rt s
(default option)

None - supports full 
HJ language

Creates additional 
worker threads when 
a task blocks

work-sharing 
(Fork-Join)

hj -fj
(Same compiler option 
as work-sharing)

None - supports full 
HJ language

May perform better 
than work-sharing for 
recursive parallelism

work-stealing
(Help-First)

hjc -rt h Only supports async, 
finish, forasync, 
atomic vars, isolated

Lower overheads, 
better for loop 
parallelism

work-stealing
(Work-First)

hjc -rt w Only supports async, 
finish, forasync, 
atomic vars, isolated

Lower overheads, 
better for recursive 
parallelism

work-stealing
(Adaptive)

hjc -rt a Only supports async, 
finish, forasync, 
atomic vars, isolated

Lower overheads, 
automatically chooses 
between help-first and 
work-first policies
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Iterative Fork-Join Microbenchmark

• k = number of tasks

• ts(k) = sequential time

• t1
wf(k) = 1-worker time for work-stealing with work-first 

policy

• t1
hf(k) = 1-worker time for work-stealing with help-first 

policy

• t1
ws(k) = 1-worker time for work-sharing

• Java-thread(k) = create a Java thread for each async

finish { //startFinish
     for (int i=1; i<k; i++) 
           async Ti;  // task i
     T0; //task 0
}
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 Fork-Join Microbenchmark Measurements (execution 
time in micro-seconds)

Help-First may perform better than Work-First on this 
microbenchmark if the number of workers is increased to > 1
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Goals for Today’s Lecture
• Abstract vs. Real performance

• seq clause in async statements

• forasync loops and “chunking”
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Adding a Threshold Test for Efficiency
1.void fib (int n) {

2.  if (n<2) {

3.    . . .

4.  } else {

5.    finish {

6.      async fib(n-1);

7.      async fib(n-2);

8.    } // finish

9.  } // if-else

10.} // fib()

1.void fib (int n) {

2.  if (n<2) {

3.    . . .

4.  } else if ( n > THRESHOLD) {

5.      // PARALLEL VERSION

6.      finish {

7.        async fib(n-1);

8.        async fib(n-2);

9.      } // finish

10.  } else { // SEQUENTIAL VERSION

11.      fib(n-1); fib(n-2);

12.  } // if-else-else

13.} // fib()
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seq clause in HJ async statement

1. void fib (int n) {

2.    if (n<2) {

3.        . . .

4.    } else { 

5.         finish {

6.             async seq(n <= THRESHOLD) fib(n-1);

7.             async seq(n <= THRESHOLD) fib(n-2);

8.         }

9.     } // if-else

10.} // fib()

• seq clause specifies condition under which async should be executed sequentially
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Example of seq clause: nqueens.hj 
1.  void nqueens_kernel(int [] a, int depth) {
2.     if (size == depth) {
3.       total_count.addAndGet(1); // Add to solution count
4.       return;
5.     }
6.     /* try each possible position for queen at depth */
7.     for (int i =  0; i < size; i++) {
8.       async seq(depth >= cutoff_value) {
9.         /* allocate a temporary array and copy a[] into it */
10.        int [] b = new int [depth+1];
11.        System.arraycopy(a, 0, b, 0, depth);
12.        b[depth] = i;
13.        if (ok( (depth +  1), b))
14.          nqueens_kernel(b, depth+1);
15.      }
16.    }
17.  }
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Goals for Today’s Lecture
• Abstract vs. Real performance

• seq clause in async statements

• forasync loops and “chunking”
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HJ’s pointwise for & forasync statements
Goal: capture common for-async pattern in a single construct for 

multidimensional loops e.g., replace
finish {

  for (int I = 0 ; I < N ; I++)

    for (int J = 0 ; J < N ; J++) 

      async

        for (int K = 0 ; K < N ; K++)

          C[I][J] += A[I][K] * B[K][J];

}

by
finish forasync (point [I,J] : [0:N-1,0:N-1])

  for (point[K] : [0:N-1])

    C[I][J] += A[I][K] * B[K][J];
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Observations
• Combination of for-async is replaced by a single keyword, 

forasync

• Multiple loops can be collapsed into a single forasync, with a 
multi-dimensional iteration space.

• Iteration variable for a forasync is a point (integer tuple), such 
as [I,J]

• Loop bounds can be specified as a rectangular region (dimension 
ranges) such as [0:N-1,0:N-1]

• HJ also extends the sequential for statement so as to iterate 
sequentially over a rectangular region
—Simplifies conversion between for and forasync
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hj.lang.point, an index type for multi-
dimensional loops

• A point is an element of an n-dimensional Cartesian space (n>=1) 
with integer-valued coordinates e.g., [5], [1, 2], … 
— Dimensions of a point are numbered from 0 to n-1
— n is also referred to as the rank of the point

• A point variable can hold values of different ranks e.g., 
— point p; p = [1]; … p = [2,3]; …

• The following operations are defined on point-valued expression p1
— p1.rank --- returns rank of point p1
— p1.get(i) --- returns element i of point p1

– Returns element (i mod p1.rank) if i < 0 or  i >= p1.rank

— p1.lt(p2), p1.le(p2), p1.gt(p2), p1.ge(p2)
– Returns true iff p1 is lexicographically <, <=, >, or >= p2 
– Only defined when p1.rank and p1.rank are equal
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Example
public class TutPoint {

    public static void main(String[] args) {

        point p1 = [1,2,3,4,5];

        point p2 = [1,2];

        point p3 = [2,1];

        System.out.println("p1 = " + p1 + " ; p1.rank = " + p1.rank 

                           + " ; p1.get(2) = " + p1.get(2));

        System.out.println("p2 = " + p2 + " ; p3 = " + p3

                           + " ; p2.lt(p3) = " + p2.lt(p3));

    } // main()

} // TutPoint

Console output:

p1 = [1,2,3,4,5] ; p1.rank = 5 ; p1.get(2) = 3
p2 = [1,2] ; p3 = [2,1] ; p2.lt(p3) = true
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hj.lang.region, a rectangular iteration 
space for multi-dimensional loops

A region is the set of points contained in a rectangular subspace

A region variable can hold values of different ranks e.g., 
– region R; R = [0:10]; … R = [-100:100, -100:100]; … R = [0:-1]; …

Operations
– R.rank ::= # dimensions in region; 

– R.size() ::= # points in region
– R.contains(P) ::= predicate if region R contains point P
– R.contains(S) ::= predicate if region R contains region S
– R.equal(S) ::= true if region R equals region S
– R.rank(i) ::= projection of region R on dimension i (a one-dimensional region)
– R.rank(i).low() ::= lower bound of ith dimension of region R
– R.rank(i).high() ::= upper bound of ith dimension of region R
– R.ordinal(P) ::= ordinal value of point P in region R
– R.coord(N) ::= point in region R with ordinal value = N
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Summary of forasync statement
forasync (point [i1] : [lo1:hi1]) <body> 

forasync (point [i1,i2] : [lo1:hi1,lo2:hi2]) <body> 

forasync (point [i1,i2,i3] : [lo1:hi1,lo2:hi2,lo3:hi3]) <body> 

. . .

• forasync statement creates multiple async child tasks, one per 
iteration of the forasync
—all child tasks can execute <body> in parallel
—child tasks are distinguished by index “points” ([i1], [i1,i2], …)

• <body> can read local variables from parent (copy-in semantics 
like async)

• forasync needs a finish for termination, just like regular async 
tasks
—Later, we will learn about replacing “finish forasync” by “forall”
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Pointwise sequential for loop

• HJ extends Java’s for loop to support sequential iteration over 
points in region R in canonical lexicographic order
— for ( point p : R ) . . .

• Standard point operations can be used to extract individual index 
values from point p
— for ( point p : R ) { int i = p.get(0); int j = 
p.get(1); . . . }

• Or an “exploded” syntax is commonly used instead of explicitly 
declaring a point variable
— for ( point [i,j] : R ) { . . . }

• The exploded syntax declares the constituent variables (i, j, …) 
as local int variables in the scope of the for loop body
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forasync examples: updates to a 
two-dimensional Java array

// Case 1: loops i,j can run in parallel 

forasync (point[i,j] : [0:m-1,0:n-1]) A[i][j] = F(A[i][j]) ;

// Case 2: only loop i can run in parallel 

forasync (point[i] : [1:m-1]) 

  for (point[j] : [1:n-1]) // Equivalent to “for (j=1;j<n;j++)”

     A[i][j] = F(A[i][j-1]) ;

// Case 3: only loop j can run in parallel 

for (point[i] : [1:m-1]) // Equivalent to “for (i=1;i<m;j++)”

  finish forasync (point[j] : [1:n-1])

     A[i][j] = F(A[i-1][j]) ;
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One-Dimensional Iterative Averaging Example

• Initialize a one-dimensional array of (n+2) double’s with boundary 
conditions, myVal[0] = 0 and myVal[n+1] = 1. 

• In each iteration, each interior element myVal[i] in 1..n is replaced by 
the average of its left and right neighbors.
— Two separate arrays are used in each iteration, one for old values and the 

other for the new values

• After a sufficient number of iterations, we expect each element of the 
array to converge to myVal[i] = i/(n+1)
— In this case, myVal[i] = (myVal[i-1]+myVal[i+1])/2, for all i in 1..n 

Illustration of an intermediate step for n = 8 (source: Figure 6.19 in Lin-Snyder book)
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HJ code for One-Dimensional Iterative Averaging 
using nested for-finish-forasync structure 

1. for (point [iter] : [0:iterations-1]) {

2.   // Compute MyNew as function of input array MyVal

3.   finish forasync (point [j] : [1:n]) { // Create n tasks

4.      myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

5.   } // finish forasync

6.   temp=myVal; myVal=myNew; myNew=temp;// Swap myVal & myNew; 

7.   // myNew becomes input array for next iteration

8. } // for

• How many tasks does this version create?

• This is an idealized version with no “chunking” of forasync iterations
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Chunking of forasync loops for 
efficiency

// Original forasync loop iterates over region R

forasync (point [i,j] : R) <body>

// Chunked forasync loop iterates over Ci*Cj chunks with 

// point [ii,jj] in region chunks(R,[Ci,Cj]).

// Forasync body contains inner for loop iterating over

// myChunk(R,[ii,jj])

forasync (point [ii,jj] : chunks(R,[Ci,Cj]))

  for (point [i,j] : myChunk(R,[ii,jj]))
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Example: HJ code for One-Dimensional Iterative 
Averaging with chunked for-finish-forasync-for 

1. for (point [iter] : [0:iterations-1]) {

2.   // Compute MyNew as function of input array MyVal

3.   int Cj = ...; // Set to desired number of chunks

4.   int iters = (n+Cj-1)/Cj; // Max iterations per chunk

5.   finish forasync (point [jj]:[1:Cj]) {

6.      for (point [j]:[1+(jj-1)*iters : Math.min(jj*iters,n)])

7.        myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

8.   } // finish forasync

9.   temp=myVal; myVal=myNew; myNew=temp;// Swap myVal & myNew; 

10.  // myNew becomes input array for next iteration

11.} // for

• How many tasks does this chunked version create?
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