Homework 4: due by 11:55pm on Wednesday, March 20, 2013
(Total: 100 points)
Instructor: Vivek Sarkar

All homeworks should be submitted in a directory named hw_4 using the turn-in script. In case of problems using the script, you should email a zip file containing the directory to comp322-staff@mailman.rice.edu before the deadline. See course wiki for late submission penalties.

Honor Code Policy: All submitted homeworks are expected to be the result of your individual effort. You are free to discuss course material and approaches to problems with your other classmates, the teaching assistants and the professor, but you should never misrepresent someone else’s work as your own. If you use any material from external sources, you must provide proper attribution.

1 Written Assignment (50 points total)

Please submit your solution to this assignment in a plain text file named hw_4_written.txt in the submission system. Syntactic errors in program text will not be penalized in the written assignment e.g., missing semicolons, incorrect spelling of keywords, etc. Pseudo-code is acceptable so long as the meaning of your program is unambiguous.

1.1 Phasers and Atomic Integers (25 points)

Consider the incomplete HJ program below in Listing 1, followed by a desired inter-task synchronization pattern in Figure 1.

1. (15 points) Complete the missing phaser declarations and phaser registrations in lines 3, 8, 11, 14, to obtain a complete HJ program that implements the inter-task synchronization pattern in Figure 1.

2. (10 points) Assume that \(a\) is a reference to a Java AtomicInteger object initialized to zero, and that each of steps A() through L() include the following code, \(\texttt{int n = a.getAndAdd(1);}\). What are the possible values that variable \(n\) can receive in step H()?

Since the isolated statement is not available in Java, the version below in class AtomicPRNG (Listing 3) attempts to implement the same functionality by using Java atomic variables instead.

1.2 HJ isolated statements vs. Java atomic variables (25 points)

Many applications use Pseudo-Random Number Generators (PRNGs) as in class IsolatedPRNG in Listing 2. The idea is that the seed field takes a linear sequence of values obtained by successive calls to the nextInt() method as shown in line 7. The use of the HJ isolated statement in lines 5–8 ensures that there will be no data race on the seed field if nextSeed() is called in parallel by multiple tasks. The serialization of the isolated statement instances will determine which task obtains which seed in the sequence.

1. (15 points) Assuming a scenario where nextSeed() is called by multiple tasks in parallel on the same PRNG object, state if the implementation of AtomicPRNG.nextSeed() has the same semantics as that of IsolatedPRNG.nextSeed(). If so, why? If not, why not?

By “same semantics”, we mean that for every IsolatedPRNG execution, we can find an equivalent AtomicPRNG execution that results in the same answer, and for every AtomicPRNG execution, we can find an equivalent IsolatedPRNG execution that results in the same answer.

2. (10 points) Why is the “while (true)” loop needed in line 5 of AtomicPRNG.nextSeed()? What would happen if the while loop was removed?
2 Programming Assignment (50 points total)

2.1 Constraint Satisfaction Search algorithms

Constraint-satisfaction problems arise frequently in several applications areas including puzzle-solving and engineering design. These problems are computationally intensive and well suited for speedup through parallel processing. This assignment explores parallelization of constraint-satisfaction search algorithms that use forward checking. It is well known that some form of look-ahead, as in forward checking, reduces the sequential execution time for the application thereby making it a more credible candidate for parallelization than simple backtracking. This assignment will focus on the use of constraint-satisfaction search in puzzle-solving, with n-queens and Sudoku puzzles as two use cases.

An intermediate state of a constraint-satisfaction search is characterized by a partial Problem State in which some variables have a single assigned value, and a Feasible Value Table (FVT), that provides a set of possible values for the remaining free variables. If the set becomes empty for any variable, then it implies that no feasible solution can be derived from the given intermediate state. If an FVT has exactly one value per variable, then it can be combined with the partial Problem State to obtain a complete Problem State.
In the sequential code given to you, you can find the constraint-satisfaction search code in method `search()` of `ConstraintSatisfaction.hj`, which is also shown in Listing 4 below. In this method, parameter `state` (of type `ProblemState`) contains the partial problem statement on entry, parameter `curVar` identifies the current variable to be explored in the search, and parameter `fvt` contains the FVT on entry. Line 2 checks if we are examining the last variable, in which case no further forward checking is needed; instead, `state` and `fvt` together identify one or more solutions that can be added to the set of feasible solutions. The loop body in lines 7–11 of Listing 4 is then repeated for each feasible value `v` of `curVar` in `fvt`. This can be seen in line 9 which constructs a new state in which `curVar = v`. The call to `forwardCheck()` in line 10 prunes `fvt` to obtained a reduced `newFvt` that removes values of variables that are not feasible in conjunction with `curVar = v`. If `newFvt` is `null` it means that no feasible solution is possible for `curVar = v`. Otherwise, the recursive call to `search()` in line 11 explores feasible values for later variables.

Listing 5 contains the sequential code for method `forwardCheck()` of `ConstraintSatisfaction.hj`, which was called in line 10 of Listing 4. Line 3 iterates through the remaining free variables starting with `curVar+1`, and line 5 iterates through the values `v` that can be taken by `freeVar`. The essence of `forwardCheck()` is captured by the call to `problem.isConsistent(curVar, curVal, freeVar, v)` in line 7, which checks if the assignment of `v` to `freeVar` is consistent with the assignment of `curVal` to `curVar`. If so, the assignment of `v` to `freeVar` is added to `newFvt` (otherwise, it is not added). Line 10 checks if the set of feasible values for `freeVar` is empty. If so, a `null` value is returned instead of `newFvt` since no feasible solution exists at this point.
2.2 The Sequential Constraint-Satisfaction Solver

We have provided you an implementation of a sequential constraint-satisfaction search algorithm in a zip file containing the following:

1. IConstraintSystem.hj — this interface defines the methods that a game/puzzle should implement in order for it to be solvable by our solver.

2. ProblemState.hj — this class represents the state of the game.

3. ConstraintSatisfaction.hj — this file contains two public methods, solve() and parallelSolve(). solve() contains a sequential implementation of the constraint-satisfaction search algorithm. parallelSolve() calls parallelSearch() which is currently empty, and will need to be filled in by you in parts 1 and 2 of your assignment (Section 2.3). The main programs also perform a comparison test on the results returned by solve() and parallelSolve(), which should pass after you’ve completed the assignments (but which fails for parallelSolve() in the version provided).

4. NQueens.hj — client solver for the NQueens problem.

5. Sudoku.hj — client solver for Sudoku, with a Reader to read input problems from the disk.
6. NQueensMain.hj — main program that starts and validates the results of the NQueens solver.

7. SudokuMain.hj — main program that starts and validates the results of the Sudoku solver.

Many puzzles can be represented by a set of rules that, applied on the current state of the puzzle, decide what are the possible actions that can be performed, which lead to a new puzzle state (with an assignment of values to a subset of free variables), thereby making them amenable to constraint-satisfaction search. This homework focuses on NQueens and Sudoku as two examples of such puzzles.

Alternative approaches to solving the NQueens puzzle have already been studied in class. The default size used by NQueensMain for this problem is $n = 12$.

Sudoku is a popular puzzle game that requires players to fill in missing numbers from 0 to N-1 on a square $N \times N$ board, taking into account the following constraints:

- No square contains more than a number
- Every number appears only once on each column of the board.
- Every number appears only once on each row of the board.
- Every number appears only once in each individual region of the board. Regions are usually rectangular areas of size $\sqrt{N} \times \sqrt{N}$ size.

Although Sudoku games are usually 9×9 with 3×3 regions, as in the 9x9.txt file, there are also variations that take larger board sizes as input, such as 16x16.txt with 4x4 regions. If 9x9 boards use the digits 1..9 to fill the board, larger sizes use 1..9, A, B, C, etc for the same purpose. Furthermore, some variations of Sudoku allow for multiple solutions, and the solver provided indeed finds all the possible solutions. If a cost function is specified, the solver must find the “cheapest” solution. The supplied serial solver already does that for you; however, it is your responsibility to keep the solver working in all case. The default input used by SudokuMain.hj is 9x9-2-multisol.txt.

2.3 Your Assignment: Parallel Constraint-Satisfaction Search

Your assignment is to design and implement a parallel algorithm for constraint-satisfaction search, using the provided sequential implementation as a starting point. Your homework deliverables are as follows.

1. [Computation of all solutions (15 points)]
 Create a new parallel version of ConstraintSatisfaction.hj that is designed to achieve the smallest execution time on the parallel machine (with 2 or more cores) that you use for this homework. You will be graded on the correctness and speedup of your parallel version. You can focus your attention on parallelizing the search() method. Keep in mind that the call to problem.addSolution() in line 3 of Listing 4 is not thread-safe i.e., it can lead to interference and data races if it is called multiple times (with different solutions) in parallel.

 Your solution should work for any constraint-satisfaction problem, but you should test it with NQueensMain.hj, both for correctness and for achieving the best performance that you can relative to the sequential version. The addSolution() method in NQueensCS.hj accumulates all solutions into a single array. (It does not attempt to find the best solution according to some cost function.)

 Please place all files related to this solution in a subdirectory named “hw4/part1”. (You are allowed to add or modify methods in any class, so long as your implementation still works for any constraint-satisfaction problem, and the parallelSearch() method returns the same results as search().)

2. [Computation of lowest-cost solution (20 points)]
 Create a new parallel version of ConstraintSatisfaction.hj that is designed to achieve the smallest execution time to return a single solution with lowest cost (so long as at least one feasible solution exists). While one approach is to simply reuse the solution from Part 1 above and return the solution
with lowest cost, you can be smarter and reduce the work done by pruning the exploration of partial solutions that are guaranteed to never lead to a solution lower than the current best solution. You will be graded on the real speedup achieved by both your sequential and parallel versions relative to this brute-force approach. (The speedup will come from a combination of algorithmic improvements and from parallel computing.)

Your solution should work for any constraint-satisfaction problem with a cost function, but you should test it with SudokuMain.hj, both for correctness and for achieving the best performance that you can. To make this general, assume that the getCost() method provides a cost for both complete solutions and partial solutions, and that the cost of a partial solution is guaranteed to be non-decreasing as more variables in the FVT are bound to single values.

The addSolution() method in SudokuCS.hj stores the best solution found (if any) using a (artificial) cost function that corresponds to the single BigInteger value obtained by scanning the digits from left-to-right and top-down in the solution. accumulates all solutions into a single array. As written, getCost() only provides a meaningful cost if the solution is a final Sudoku solution. You are welcome to extend it to provide useful bounds for partial solutions, so long as it obeys the non-decreasing montonicity constraint mentioned above.

Please place all files related to this solution in a subdirectory named “hw4/part2”. (You are allowed to add or modify method definitions in any class, so long as your implementation still works for any constraint-satisfaction problem with a cost function, and the parallelSearch() method returns a solution with the same minimum cost as search() would.)

3. [Homework report (15 points)]

You should submit a brief report summarizing the design of your parallel algorithms in Parts 1 and 2 above, explaining why you believe that each implementation is correct and data-race-free.

Your report should also include the following measurements for both parts 1 and 2:

(a) Performance of the sequential version with the default input

(b) Performance of the parallel version with the default input, executed with the “-places 1:1”, “-places 1:2”, “-places 1:4” and “-places 1:8” options on a Sugar compute node to run with 1, 2, 4 and 8 workers.

Please place the report file(s) in the top-level hw4 directory.