
COMP 322 Spring 2012

Homework 6: due by 11:55pm on 4/19/13; automatic penalty-free

extenstion till 4/26/13

(Total: 100 points)
Instructor: Vivek Sarkar

All homeworks should be submitted in a directory named hw 6 using the turn-in script. In
case of problems using the script, you should email a zip file containing the directory to
comp322-staff@mailman.rice.edu before the deadline. See course wiki for late submission penal-
ties. There are no programming assignments in this homework.

Honor Code Policy: All submitted homeworks are expected to be the result of your individual effort. You are
free to discuss course material and approaches to problems with your classmates, the teaching assistants and
the professor, but you should never misrepresent someone else’s work as your own. If you use any material
from external sources, you must provide proper attribution.

1 Locality with Places and Distributions (35 points)

The use of the HJ place construct is motivated by improving locality in a computer system’s memory
hierarchy. We will use a very simple model of locality in this problem by focusing our attention on remote
reads. A remote read is a read access on variable V performed by task T0 executing in place P0, such that
the value in V read by T0 was written by another task T1 executing in place P1 6= P0. All other reads are
local reads. By this definition, the read of A[0] in line 11 in the example code below is a local read and the
read of A[1] in line 12 is a remote read, assuming this HJ program is run with the -places 2:1 option

1. finish {

2. place p0 = place.factory.place(0); place p1 = place.factory.place(1);

3. double[] A = new double[2];

4. finish {

5. async at(p0) { A[0] = ... ; } async at(p1) { A[1] = ... ; }

6. }

7. async at(p0) {

8. ... = A[0]; // Local read

9. ... = A[1]; // Remote read

10. }

11. }

Consider the following variant of the one-dimensional iterative averaging example studied in the lectures.
We are only concerned with local vs. remote reads in this example, and not with the overheads of creating
async tasks.

1. dist d = dist.factory.block([1:N]);

2. for (point [iter] : [0:M-1]) {

3. finish for(int j=1; j<=N; j++)

4. async at(d[j]) {

5. myNew[j] = (myVal[j-1] + myVal[j+1]) / 2.0;

6. } //finish-for-async-at

7. double[] temp = myNew; myNew = myVal; myVal = temp;

8. } // for

1 of 3

comp322-staff@mailman.rice.edu

COMP 322
Spring 2012

Homework 6: due by 11:55pm on 4/19/13; automatic penalty-free extenstion till 4/26/13

(Total: 100 points)

1. (15 points) Estimate the total number of remote reads in this code as a symbolic function of the
array size parameter, N, the number of iterations, M, and the number of places P (assuming that the
HJ program was executed using the “-places P:1” option).

2. (10 points) Repeat part 1 above if line 1 was changed to dist d = dist.factory.cyclic([1:N]);

3. (10 points) What conclusions can you draw about the relative impact of block vs. cyclic distributions
on the number of remote reads in this example?

2 Load Imbalance with Places and Distributions (35 points)

Consider the example code below that also uses places and distributions. In this example, we are only con-
cerned with estimating the total number of operations performed at each place by adding up the contributions
from calls to perf.addLocalOps() in line 6, as is done in HJ’s abstract performance metrics.

1. (15 points) Estimate the total number of operations performed at place q (0 <= q < P) as a symbolic
function of N, P, and q. For example, if P=1, then the total number of operations performed at place
q=0 must be N*(N+1)/2.

2. (10 points) Repeat part 1 above if line 1 was changed to dist d = dist.factory.cyclic([1:N]);

3. (10 points) What conclusions can you draw about the relative impact of block vs. cyclic distributions
in improving the load balance in this example?

1. dist d = dist.factory.block([1:N]);

2. finish for(int j=1; j<=N; j++)

3. async at(d[j]) {

4. for (int i=1; i<=j; i++) {

5. ...

6. perf.addLocalOps(1)

7. }

8. } //finish-for-async-at

3 Message Passing Interface (30 points)

Consider the MPI code fragment shown below when executed with two processes:

1. (15 points) What value will be output by the print statement in process 0?

2. (15 points) How will the output change if the Irecv() call is replaced by Recv() (and the Wait() call
eliminated)?

int rank, size, next, prev;

int n1[] = new int[1]; int n2[] = new int[1];

int tag1 = 201, tag2 = 202;

Request request; Status status;

size = MPI.COMM_WORLD.Size();

rank = MPI.COMM_WORLD.Rank();

next = (rank + 1) % size;

prev = (rank + size - 1) %size;

2 of 3

COMP 322
Spring 2012

Homework 6: due by 11:55pm on 4/19/13; automatic penalty-free extenstion till 4/26/13

(Total: 100 points)

n1[0] = rank*10 + 1; n2[0] = rank*10 + 2;

if (rank == 0) {

request= MPI.COMM_WORLD.Irecv(n1,0,1,MPI_INT,prev,tag1);

MPI.COMM_WORLD.Send(n2,0,1,MPI_INT,next,tag2);

status = MPI.COMM_WORLD.Wait(request);

System.out.println(Output = + n1[0]);

}

else { // rank == 1

MPI.COMM_WORLD.Recv(n1,0,1,MPI_INT,prev,tag2);

n2[0] = n1[0];

MPI.COMM_WORLD.Send(n2,0,1,MPI_INT,next, tag1);

}

3 of 3

	Locality with Places and Distributions (35 points)
	Load Imbalance with Places and Distributions (35 points)
	Message Passing Interface (30 points)

